\left\{ \begin{array} { l } { x - y = 2 a } \\ { 2 x + 3 y = 5 - a } \end{array} \right.
Selesaikan untuk x, y
x=a+1
y=1-a
Graf
Kongsi
Disalin ke papan klip
x-y=2a,2x+3y=5-a
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
x-y=2a
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
x=y+2a
Tambahkan y pada kedua-dua belah persamaan.
2\left(y+2a\right)+3y=5-a
Gantikan y+2a dengan x dalam persamaan lain, 2x+3y=5-a.
2y+4a+3y=5-a
Darabkan 2 kali y+2a.
5y+4a=5-a
Tambahkan 2y pada 3y.
5y=5-5a
Tolak 4a daripada kedua-dua belah persamaan.
y=1-a
Bahagikan kedua-dua belah dengan 5.
x=1-a+2a
Gantikan 1-a dengan y dalam x=y+2a. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=a+1
Tambahkan 2a pada 1-a.
x=a+1,y=1-a
Sistem kini diselesaikan.
x-y=2a,2x+3y=5-a
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&-1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\right)}&-\frac{-1}{3-\left(-2\right)}\\-\frac{2}{3-\left(-2\right)}&\frac{1}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 2a+\frac{1}{5}\left(5-a\right)\\-\frac{2}{5}\times 2a+\frac{1}{5}\left(5-a\right)\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+1\\1-a\end{matrix}\right)
Lakukan aritmetik.
x=a+1,y=1-a
Ekstrak unsur matriks x dan y.
x-y=2a,2x+3y=5-a
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
2x+2\left(-1\right)y=2\times 2a,2x+3y=5-a
Untuk menjadikan x dan 2x sama, darabkan semua sebutan pada setiap belah persamaan pertama dengan 2 dan semua sebutan pada setiap belah yang kedua dengan 1.
2x-2y=4a,2x+3y=5-a
Permudahkan.
2x-2x-2y-3y=4a+a-5
Tolak 2x+3y=5-a daripada 2x-2y=4a dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
-2y-3y=4a+a-5
Tambahkan 2x pada -2x. Seubtan 2x dan -2x saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
-5y=4a+a-5
Tambahkan -2y pada -3y.
-5y=5a-5
Tambahkan 4a pada -5+a.
y=1-a
Bahagikan kedua-dua belah dengan -5.
2x+3\left(1-a\right)=5-a
Gantikan 1-a dengan y dalam 2x+3y=5-a. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
2x+3-3a=5-a
Darabkan 3 kali 1-a.
2x=2a+2
Tolak 3-3a daripada kedua-dua belah persamaan.
x=a+1
Bahagikan kedua-dua belah dengan 2.
x=a+1,y=1-a
Sistem kini diselesaikan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}