Langkau ke kandungan utama
Selesaikan untuk x, y
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x+y=67.56,x-y=12.4
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
x+y=67.56
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
x=-y+67.56
Tolak y daripada kedua-dua belah persamaan.
-y+67.56-y=12.4
Gantikan -y+67.56 dengan x dalam persamaan lain, x-y=12.4.
-2y+67.56=12.4
Tambahkan -y pada -y.
-2y=-55.16
Tolak 67.56 daripada kedua-dua belah persamaan.
y=27.58
Bahagikan kedua-dua belah dengan -2.
x=-27.58+67.56
Gantikan 27.58 dengan y dalam x=-y+67.56. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=39.98
Tambahkan 67.56 pada -27.58 dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
x=39.98,y=27.58
Sistem kini diselesaikan.
x+y=67.56,x-y=12.4
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}67.56\\12.4\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}67.56\\12.4\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}67.56\\12.4\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}67.56\\12.4\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}67.56\\12.4\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}67.56\\12.4\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 67.56+\frac{1}{2}\times 12.4\\\frac{1}{2}\times 67.56-\frac{1}{2}\times 12.4\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1999}{50}\\\frac{1379}{50}\end{matrix}\right)
Lakukan aritmetik.
x=\frac{1999}{50},y=\frac{1379}{50}
Ekstrak unsur matriks x dan y.
x+y=67.56,x-y=12.4
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
x-x+y+y=67.56-12.4
Tolak x-y=12.4 daripada x+y=67.56 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
y+y=67.56-12.4
Tambahkan x pada -x. Seubtan x dan -x saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
2y=67.56-12.4
Tambahkan y pada y.
2y=55.16
Tambahkan 67.56 pada -12.4 dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
y=\frac{1379}{50}
Bahagikan kedua-dua belah dengan 2.
x-\frac{1379}{50}=12.4
Gantikan \frac{1379}{50} dengan y dalam x-y=12.4. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x-27.58=12.4
Darabkan -1 kali \frac{1379}{50}.
x=39.98
Tambahkan 27.58 pada kedua-dua belah persamaan.
x=39.98,y=\frac{1379}{50}
Sistem kini diselesaikan.