Langkau ke kandungan utama
Selesaikan untuk x, y
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

3x-2y=13,x+2y=-1
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
3x-2y=13
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
3x=2y+13
Tambahkan 2y pada kedua-dua belah persamaan.
x=\frac{1}{3}\left(2y+13\right)
Bahagikan kedua-dua belah dengan 3.
x=\frac{2}{3}y+\frac{13}{3}
Darabkan \frac{1}{3} kali 2y+13.
\frac{2}{3}y+\frac{13}{3}+2y=-1
Gantikan \frac{2y+13}{3} dengan x dalam persamaan lain, x+2y=-1.
\frac{8}{3}y+\frac{13}{3}=-1
Tambahkan \frac{2y}{3} pada 2y.
\frac{8}{3}y=-\frac{16}{3}
Tolak \frac{13}{3} daripada kedua-dua belah persamaan.
y=-2
Bahagikan kedua-dua belah persamaan dengan \frac{8}{3} yang bersamaan dengan mendarab kedua-dua belah dengan salingan pecahan.
x=\frac{2}{3}\left(-2\right)+\frac{13}{3}
Gantikan -2 dengan y dalam x=\frac{2}{3}y+\frac{13}{3}. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=\frac{-4+13}{3}
Darabkan \frac{2}{3} kali -2.
x=3
Tambahkan \frac{13}{3} pada -\frac{4}{3} dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
x=3,y=-2
Sistem kini diselesaikan.
3x-2y=13,x+2y=-1
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-1\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}3&-2\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{-2}{3\times 2-\left(-2\right)}\\-\frac{1}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 13+\frac{1}{4}\left(-1\right)\\-\frac{1}{8}\times 13+\frac{3}{8}\left(-1\right)\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Lakukan aritmetik.
x=3,y=-2
Ekstrak unsur matriks x dan y.
3x-2y=13,x+2y=-1
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
3x-2y=13,3x+3\times 2y=3\left(-1\right)
Untuk menjadikan 3x dan x sama, darabkan semua sebutan pada setiap belah persamaan pertama dengan 1 dan semua sebutan pada setiap belah yang kedua dengan 3.
3x-2y=13,3x+6y=-3
Permudahkan.
3x-3x-2y-6y=13+3
Tolak 3x+6y=-3 daripada 3x-2y=13 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
-2y-6y=13+3
Tambahkan 3x pada -3x. Seubtan 3x dan -3x saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
-8y=13+3
Tambahkan -2y pada -6y.
-8y=16
Tambahkan 13 pada 3.
y=-2
Bahagikan kedua-dua belah dengan -8.
x+2\left(-2\right)=-1
Gantikan -2 dengan y dalam x+2y=-1. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x-4=-1
Darabkan 2 kali -2.
x=3
Tambahkan 4 pada kedua-dua belah persamaan.
x=3,y=-2
Sistem kini diselesaikan.