\left\{ \begin{array} { l } { 2 x - y = 3 } \\ { 3 x + 4 y = 2 } \end{array} \right.
Selesaikan untuk x, y
x = \frac{14}{11} = 1\frac{3}{11} \approx 1.272727273
y=-\frac{5}{11}\approx -0.454545455
Graf
Kongsi
Disalin ke papan klip
2x-y=3,3x+4y=2
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
2x-y=3
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
2x=y+3
Tambahkan y pada kedua-dua belah persamaan.
x=\frac{1}{2}\left(y+3\right)
Bahagikan kedua-dua belah dengan 2.
x=\frac{1}{2}y+\frac{3}{2}
Darabkan \frac{1}{2} kali y+3.
3\left(\frac{1}{2}y+\frac{3}{2}\right)+4y=2
Gantikan \frac{3+y}{2} dengan x dalam persamaan lain, 3x+4y=2.
\frac{3}{2}y+\frac{9}{2}+4y=2
Darabkan 3 kali \frac{3+y}{2}.
\frac{11}{2}y+\frac{9}{2}=2
Tambahkan \frac{3y}{2} pada 4y.
\frac{11}{2}y=-\frac{5}{2}
Tolak \frac{9}{2} daripada kedua-dua belah persamaan.
y=-\frac{5}{11}
Bahagikan kedua-dua belah persamaan dengan \frac{11}{2} yang bersamaan dengan mendarab kedua-dua belah dengan salingan pecahan.
x=\frac{1}{2}\left(-\frac{5}{11}\right)+\frac{3}{2}
Gantikan -\frac{5}{11} dengan y dalam x=\frac{1}{2}y+\frac{3}{2}. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=-\frac{5}{22}+\frac{3}{2}
Darabkan \frac{1}{2} dengan -\frac{5}{11} dengan mendarabkan pengangka dengan pengangka dan penyebut dengan penyebut. Kemudian kurangkan pecahan tersebut ke sebutan terendah yang mungkin.
x=\frac{14}{11}
Tambahkan \frac{3}{2} pada -\frac{5}{22} dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
x=\frac{14}{11},y=-\frac{5}{11}
Sistem kini diselesaikan.
2x-y=3,3x+4y=2
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}2&-1\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-\left(-3\right)}&-\frac{-1}{2\times 4-\left(-3\right)}\\-\frac{3}{2\times 4-\left(-3\right)}&\frac{2}{2\times 4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&\frac{1}{11}\\-\frac{3}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 3+\frac{1}{11}\times 2\\-\frac{3}{11}\times 3+\frac{2}{11}\times 2\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{14}{11}\\-\frac{5}{11}\end{matrix}\right)
Lakukan aritmetik.
x=\frac{14}{11},y=-\frac{5}{11}
Ekstrak unsur matriks x dan y.
2x-y=3,3x+4y=2
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
3\times 2x+3\left(-1\right)y=3\times 3,2\times 3x+2\times 4y=2\times 2
Untuk menjadikan 2x dan 3x sama, darabkan semua sebutan pada setiap belah persamaan pertama dengan 3 dan semua sebutan pada setiap belah yang kedua dengan 2.
6x-3y=9,6x+8y=4
Permudahkan.
6x-6x-3y-8y=9-4
Tolak 6x+8y=4 daripada 6x-3y=9 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
-3y-8y=9-4
Tambahkan 6x pada -6x. Seubtan 6x dan -6x saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
-11y=9-4
Tambahkan -3y pada -8y.
-11y=5
Tambahkan 9 pada -4.
y=-\frac{5}{11}
Bahagikan kedua-dua belah dengan -11.
3x+4\left(-\frac{5}{11}\right)=2
Gantikan -\frac{5}{11} dengan y dalam 3x+4y=2. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
3x-\frac{20}{11}=2
Darabkan 4 kali -\frac{5}{11}.
3x=\frac{42}{11}
Tambahkan \frac{20}{11} pada kedua-dua belah persamaan.
x=\frac{14}{11}
Bahagikan kedua-dua belah dengan 3.
x=\frac{14}{11},y=-\frac{5}{11}
Sistem kini diselesaikan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}