Langkau ke kandungan utama
Selesaikan untuk y, x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

y-2x=1
Pertimbangkan persamaan pertama. Tolak 2x daripada kedua-dua belah.
y+5x=15
Pertimbangkan persamaan kedua. Tambahkan 5x pada kedua-dua belah.
y-2x=1,y+5x=15
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
y-2x=1
Pilih salah satu daripada persamaan dan selesaikannya untuk y dengan mengasingkan y di sebelah kiri tanda sama dengan.
y=2x+1
Tambahkan 2x pada kedua-dua belah persamaan.
2x+1+5x=15
Gantikan 2x+1 dengan y dalam persamaan lain, y+5x=15.
7x+1=15
Tambahkan 2x pada 5x.
7x=14
Tolak 1 daripada kedua-dua belah persamaan.
x=2
Bahagikan kedua-dua belah dengan 7.
y=2\times 2+1
Gantikan 2 dengan x dalam y=2x+1. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y=4+1
Darabkan 2 kali 2.
y=5
Tambahkan 1 pada 4.
y=5,x=2
Sistem kini diselesaikan.
y-2x=1
Pertimbangkan persamaan pertama. Tolak 2x daripada kedua-dua belah.
y+5x=15
Pertimbangkan persamaan kedua. Tambahkan 5x pada kedua-dua belah.
y-2x=1,y+5x=15
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&-2\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\15\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1&-2\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&-2\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-2\right)}&-\frac{-2}{5-\left(-2\right)}\\-\frac{1}{5-\left(-2\right)}&\frac{1}{5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\15\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&\frac{2}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}1\\15\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}+\frac{2}{7}\times 15\\-\frac{1}{7}+\frac{1}{7}\times 15\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
Lakukan aritmetik.
y=5,x=2
Ekstrak unsur matriks y dan x.
y-2x=1
Pertimbangkan persamaan pertama. Tolak 2x daripada kedua-dua belah.
y+5x=15
Pertimbangkan persamaan kedua. Tambahkan 5x pada kedua-dua belah.
y-2x=1,y+5x=15
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
y-y-2x-5x=1-15
Tolak y+5x=15 daripada y-2x=1 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
-2x-5x=1-15
Tambahkan y pada -y. Seubtan y dan -y saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
-7x=1-15
Tambahkan -2x pada -5x.
-7x=-14
Tambahkan 1 pada -15.
x=2
Bahagikan kedua-dua belah dengan -7.
y+5\times 2=15
Gantikan 2 dengan x dalam y+5x=15. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y+10=15
Darabkan 5 kali 2.
y=5
Tolak 10 daripada kedua-dua belah persamaan.
y=5,x=2
Sistem kini diselesaikan.