Selesaikan untuk x
x=2
Graf
Kongsi
Disalin ke papan klip
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Darabkan kedua-dua belah persamaan dengan 12, gandaan sepunya terkecil sebanyak 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Gunakan sifat kalis agihan untuk mendarab 4x dengan x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Gunakan sifat kalis agihan untuk mendarab -3x dengan x+1.
x^{2}-4x-3x+3x+4=0
Gabungkan 4x^{2} dan -3x^{2} untuk mendapatkan x^{2}.
x^{2}-7x+3x+4=0
Gabungkan -4x dan -3x untuk mendapatkan -7x.
x^{2}-4x+4=0
Gabungkan -7x dan 3x untuk mendapatkan -4x.
a+b=-4 ab=4
Untuk menyelesaikan persamaan, faktorkan x^{2}-4x+4 menggunakan formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,-4 -2,-2
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah negatif, a dan b kedua-duanya negatif. Senaraikan semua pasangan integer yang memberikan hasil 4.
-1-4=-5 -2-2=-4
Kira jumlah untuk setiap pasangan.
a=-2 b=-2
Penyelesaian ialah pasangan yang memberikan jumlah -4.
\left(x-2\right)\left(x-2\right)
Tulis semula ungkapan \left(x+a\right)\left(x+b\right) yang difaktorkan dengan menggunakan nilai yang diperolehi.
\left(x-2\right)^{2}
Tuliskan semula sebagai kuasa dua binomial.
x=2
Untuk mencari penyelesaian persamaan, selesaikan x-2=0.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Darabkan kedua-dua belah persamaan dengan 12, gandaan sepunya terkecil sebanyak 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Gunakan sifat kalis agihan untuk mendarab 4x dengan x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Gunakan sifat kalis agihan untuk mendarab -3x dengan x+1.
x^{2}-4x-3x+3x+4=0
Gabungkan 4x^{2} dan -3x^{2} untuk mendapatkan x^{2}.
x^{2}-7x+3x+4=0
Gabungkan -4x dan -3x untuk mendapatkan -7x.
x^{2}-4x+4=0
Gabungkan -7x dan 3x untuk mendapatkan -4x.
a+b=-4 ab=1\times 4=4
Untuk menyelesaikan persamaan, faktorkan sebelah kiri mengikut perkumpulan. Pertama sekali, sebelah kiri perlu ditulis semula sebagai x^{2}+ax+bx+4. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,-4 -2,-2
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah negatif, a dan b kedua-duanya negatif. Senaraikan semua pasangan integer yang memberikan hasil 4.
-1-4=-5 -2-2=-4
Kira jumlah untuk setiap pasangan.
a=-2 b=-2
Penyelesaian ialah pasangan yang memberikan jumlah -4.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Tulis semula x^{2}-4x+4 sebagai \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
Faktorkan x dalam kumpulan pertama dan -2 dalam kumpulan kedua.
\left(x-2\right)\left(x-2\right)
Faktorkan sebutan lazim x-2 dengan menggunakan sifat kalis agihan.
\left(x-2\right)^{2}
Tuliskan semula sebagai kuasa dua binomial.
x=2
Untuk mencari penyelesaian persamaan, selesaikan x-2=0.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Darabkan kedua-dua belah persamaan dengan 12, gandaan sepunya terkecil sebanyak 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Gunakan sifat kalis agihan untuk mendarab 4x dengan x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Gunakan sifat kalis agihan untuk mendarab -3x dengan x+1.
x^{2}-4x-3x+3x+4=0
Gabungkan 4x^{2} dan -3x^{2} untuk mendapatkan x^{2}.
x^{2}-7x+3x+4=0
Gabungkan -4x dan -3x untuk mendapatkan -7x.
x^{2}-4x+4=0
Gabungkan -7x dan 3x untuk mendapatkan -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -4 dengan b dan 4 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Kuasa dua -4.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Darabkan -4 kali 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
Tambahkan 16 pada -16.
x=-\frac{-4}{2}
Ambil punca kuasa dua 0.
x=\frac{4}{2}
Nombor bertentangan -4 ialah 4.
x=2
Bahagikan 4 dengan 2.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Darabkan kedua-dua belah persamaan dengan 12, gandaan sepunya terkecil sebanyak 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Gunakan sifat kalis agihan untuk mendarab 4x dengan x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Gunakan sifat kalis agihan untuk mendarab -3x dengan x+1.
x^{2}-4x-3x+3x+4=0
Gabungkan 4x^{2} dan -3x^{2} untuk mendapatkan x^{2}.
x^{2}-7x+3x+4=0
Gabungkan -4x dan -3x untuk mendapatkan -7x.
x^{2}-4x+4=0
Gabungkan -7x dan 3x untuk mendapatkan -4x.
\left(x-2\right)^{2}=0
Faktor x^{2}-4x+4. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-2=0 x-2=0
Permudahkan.
x=2 x=2
Tambahkan 2 pada kedua-dua belah persamaan.
x=2
Persamaan kini diselesaikan. Penyelesaian adalah sama.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}