Selesaikan untuk n
n=-15
n=16
Kongsi
Disalin ke papan klip
n\left(n-3\right)+2n=240
Darabkan kedua-dua belah persamaan dengan 2.
n^{2}-3n+2n=240
Gunakan sifat kalis agihan untuk mendarab n dengan n-3.
n^{2}-n=240
Gabungkan -3n dan 2n untuk mendapatkan -n.
n^{2}-n-240=0
Tolak 240 daripada kedua-dua belah.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-240\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -1 dengan b dan -240 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1\right)±\sqrt{1+960}}{2}
Darabkan -4 kali -240.
n=\frac{-\left(-1\right)±\sqrt{961}}{2}
Tambahkan 1 pada 960.
n=\frac{-\left(-1\right)±31}{2}
Ambil punca kuasa dua 961.
n=\frac{1±31}{2}
Nombor bertentangan -1 ialah 1.
n=\frac{32}{2}
Sekarang selesaikan persamaan n=\frac{1±31}{2} apabila ± ialah plus. Tambahkan 1 pada 31.
n=16
Bahagikan 32 dengan 2.
n=-\frac{30}{2}
Sekarang selesaikan persamaan n=\frac{1±31}{2} apabila ± ialah minus. Tolak 31 daripada 1.
n=-15
Bahagikan -30 dengan 2.
n=16 n=-15
Persamaan kini diselesaikan.
n\left(n-3\right)+2n=240
Darabkan kedua-dua belah persamaan dengan 2.
n^{2}-3n+2n=240
Gunakan sifat kalis agihan untuk mendarab n dengan n-3.
n^{2}-n=240
Gabungkan -3n dan 2n untuk mendapatkan -n.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=240+\left(-\frac{1}{2}\right)^{2}
Bahagikan -1 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -\frac{1}{2}. Kemudian tambahkan kuasa dua -\frac{1}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
n^{2}-n+\frac{1}{4}=240+\frac{1}{4}
Kuasa duakan -\frac{1}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
n^{2}-n+\frac{1}{4}=\frac{961}{4}
Tambahkan 240 pada \frac{1}{4}.
\left(n-\frac{1}{2}\right)^{2}=\frac{961}{4}
Faktor n^{2}-n+\frac{1}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{961}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
n-\frac{1}{2}=\frac{31}{2} n-\frac{1}{2}=-\frac{31}{2}
Permudahkan.
n=16 n=-15
Tambahkan \frac{1}{2} pada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}