Nilaikan
\frac{8\sqrt{3}}{3}+4\approx 8.618802154
Kongsi
Disalin ke papan klip
\frac{4\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}
Nisbahkan penyebut \frac{4}{2\sqrt{3}-3} dengan mendarabkan pembilang dan penyebut dengan 2\sqrt{3}+3.
\frac{4\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^{2}-3^{2}}
Pertimbangkan \left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right). Pendaraban boleh diubah menjadi perbezaan kuasa dua dengan menggunakan peraturan: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(2\sqrt{3}+3\right)}{2^{2}\left(\sqrt{3}\right)^{2}-3^{2}}
Kembangkan \left(2\sqrt{3}\right)^{2}.
\frac{4\left(2\sqrt{3}+3\right)}{4\left(\sqrt{3}\right)^{2}-3^{2}}
Kira 2 dikuasakan 2 dan dapatkan 4.
\frac{4\left(2\sqrt{3}+3\right)}{4\times 3-3^{2}}
Punca kuasa untuk \sqrt{3} ialah 3.
\frac{4\left(2\sqrt{3}+3\right)}{12-3^{2}}
Darabkan 4 dan 3 untuk mendapatkan 12.
\frac{4\left(2\sqrt{3}+3\right)}{12-9}
Kira 3 dikuasakan 2 dan dapatkan 9.
\frac{4\left(2\sqrt{3}+3\right)}{3}
Tolak 9 daripada 12 untuk mendapatkan 3.
\frac{8\sqrt{3}+12}{3}
Gunakan sifat kalis agihan untuk mendarab 4 dengan 2\sqrt{3}+3.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}