Langkau ke kandungan utama
Nilaikan
Tick mark Image
Bezakan w.r.t. x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Gandaan sepunya terkecil x-2 dan x+1 ialah \left(x-2\right)\left(x+1\right). Darabkan \frac{3}{x-2} kali \frac{x+1}{x+1}. Darabkan \frac{2}{x+1} kali \frac{x-2}{x-2}.
\frac{3\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Oleh kerana \frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dan \frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\frac{3x+3-2x+4}{\left(x-2\right)\left(x+1\right)}
Lakukan pendaraban dalam 3\left(x+1\right)-2\left(x-2\right).
\frac{x+7}{\left(x-2\right)\left(x+1\right)}
Gabungkan sebutan serupa dalam 3x+3-2x+4.
\frac{x+7}{x^{2}-x-2}
Kembangkan \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Gandaan sepunya terkecil x-2 dan x+1 ialah \left(x-2\right)\left(x+1\right). Darabkan \frac{3}{x-2} kali \frac{x+1}{x+1}. Darabkan \frac{2}{x+1} kali \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Oleh kerana \frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dan \frac{2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+3-2x+4}{\left(x-2\right)\left(x+1\right)})
Lakukan pendaraban dalam 3\left(x+1\right)-2\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{\left(x-2\right)\left(x+1\right)})
Gabungkan sebutan serupa dalam 3x+3-2x+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}+x-2x-2})
Gunakan sifat agihan dengan mendarabkan setiap sebutan x-2 dengan setiap sebutan x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}-x-2})
Gabungkan x dan -2x untuk mendapatkan -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
Untuk sebarang dua fungsi terbezakan, terbitan hasil bahagi dua fungsi adalah penyebut didarabkan dengan terbitan pengangka tolak pengangka tersebut didarabkan dengan terbitan penyebut, semuanya dibahagikan dengan kuasa dua penyebut.
\frac{\left(x^{2}-x^{1}-2\right)x^{1-1}-\left(x^{1}+7\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Terbitan polinomial ialah hasil tambah terbitan sebutannya. Terbitan sebutan pemalar ialah 0. Terbitan ax^{n} ialah nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)x^{0}-\left(x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Permudahkan.
\frac{x^{2}x^{0}-x^{1}x^{0}-2x^{0}-\left(x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Darabkan x^{2}-x^{1}-2 kali x^{0}.
\frac{x^{2}x^{0}-x^{1}x^{0}-2x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\left(-1\right)x^{0}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Darabkan x^{1}+7 kali 2x^{1}-x^{0}.
\frac{x^{2}-x^{1}-2x^{0}-\left(2x^{1+1}-x^{1}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Untuk mendarabkan kuasa yang sama asas, tambahkan eksponen.
\frac{x^{2}-x^{1}-2x^{0}-\left(2x^{2}-x^{1}+14x^{1}-7x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Permudahkan.
\frac{-x^{2}-14x^{1}+5x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Gabungkan sebutan serupa.
\frac{-x^{2}-14x+5x^{0}}{\left(x^{2}-x-2\right)^{2}}
Untuk sebarang sebutan t, t^{1}=t.
\frac{-x^{2}-14x+5\times 1}{\left(x^{2}-x-2\right)^{2}}
Untuk sebarang sebutan t kecuali 0, t^{0}=1.
\frac{-x^{2}-14x+5}{\left(x^{2}-x-2\right)^{2}}
Untuk sebarang sebutan t, t\times 1=t dan 1t=t.