Nilaikan
\frac{x+7}{\left(2x-1\right)\left(x+2\right)}
Bezakan w.r.t. x
-\frac{2x^{2}+28x+23}{4x^{4}+12x^{3}+x^{2}-12x+4}
Graf
Kongsi
Disalin ke papan klip
\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Gandaan sepunya terkecil 2x-1 dan x+2 ialah \left(2x-1\right)\left(x+2\right). Darabkan \frac{3}{2x-1} kali \frac{x+2}{x+2}. Darabkan \frac{1}{x+2} kali \frac{2x-1}{2x-1}.
\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)}
Oleh kerana \frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} dan \frac{2x-1}{\left(2x-1\right)\left(x+2\right)} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)}
Lakukan pendaraban dalam 3\left(x+2\right)-\left(2x-1\right).
\frac{x+7}{\left(2x-1\right)\left(x+2\right)}
Gabungkan sebutan serupa dalam 3x+6-2x+1.
\frac{x+7}{2x^{2}+3x-2}
Kembangkan \left(2x-1\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)})
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Gandaan sepunya terkecil 2x-1 dan x+2 ialah \left(2x-1\right)\left(x+2\right). Darabkan \frac{3}{2x-1} kali \frac{x+2}{x+2}. Darabkan \frac{1}{x+2} kali \frac{2x-1}{2x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)})
Oleh kerana \frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} dan \frac{2x-1}{\left(2x-1\right)\left(x+2\right)} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)})
Lakukan pendaraban dalam 3\left(x+2\right)-\left(2x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{\left(2x-1\right)\left(x+2\right)})
Gabungkan sebutan serupa dalam 3x+6-2x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+4x-x-2})
Gunakan sifat agihan dengan mendarabkan setiap sebutan 2x-1 dengan setiap sebutan x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+3x-2})
Gabungkan 4x dan -x untuk mendapatkan 3x.
\frac{\left(2x^{2}+3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1}-2)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Untuk sebarang dua fungsi terbezakan, terbitan hasil bahagi dua fungsi adalah penyebut didarabkan dengan terbitan pengangka tolak pengangka tersebut didarabkan dengan terbitan penyebut, semuanya dibahagikan dengan kuasa dua penyebut.
\frac{\left(2x^{2}+3x^{1}-2\right)x^{1-1}-\left(x^{1}+7\right)\left(2\times 2x^{2-1}+3x^{1-1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Terbitan polinomial ialah hasil tambah terbitan sebutannya. Terbitan sebutan pemalar ialah 0. Terbitan ax^{n} ialah nax^{n-1}.
\frac{\left(2x^{2}+3x^{1}-2\right)x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Permudahkan.
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Darabkan 2x^{2}+3x^{1}-2 kali x^{0}.
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}\times 4x^{1}+x^{1}\times 3x^{0}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Darabkan x^{1}+7 kali 4x^{1}+3x^{0}.
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{1+1}+3x^{1}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Untuk mendarabkan kuasa yang sama asas, tambahkan eksponen.
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{2}+3x^{1}+28x^{1}+21x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Permudahkan.
\frac{-2x^{2}-28x^{1}-23x^{0}}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Gabungkan sebutan serupa.
\frac{-2x^{2}-28x-23x^{0}}{\left(2x^{2}+3x-2\right)^{2}}
Untuk sebarang sebutan t, t^{1}=t.
\frac{-2x^{2}-28x-23}{\left(2x^{2}+3x-2\right)^{2}}
Untuk sebarang sebutan t kecuali 0, t^{0}=1.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}