Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
Pemboleh ubah x tidak boleh sama dengan sebarang nilai -1,1 kerana pembahagian dengan sifar tidak ditakrifkan. Darabkan kedua-dua belah persamaan dengan \left(x-1\right)\left(x+1\right), gandaan sepunya terkecil sebanyak x+1,x-1.
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
Gunakan sifat kalis agihan untuk mendarab x-1 dengan 2x-3 dan gabungkan sebutan yang serupa.
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
Gunakan sifat kalis agihan untuk mendarab x+1 dengan 2x-5 dan gabungkan sebutan yang serupa.
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
Gabungkan 2x^{2} dan 2x^{2} untuk mendapatkan 4x^{2}.
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
Gabungkan -5x dan -3x untuk mendapatkan -8x.
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
Tolak 5 daripada 3 untuk mendapatkan -2.
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
Gunakan sifat kalis agihan untuk mendarab 2 dengan x-1.
4x^{2}-8x-2=2x^{2}-2
Gunakan sifat kalis agihan untuk mendarab 2x-2 dengan x+1 dan gabungkan sebutan yang serupa.
4x^{2}-8x-2-2x^{2}=-2
Tolak 2x^{2} daripada kedua-dua belah.
2x^{2}-8x-2=-2
Gabungkan 4x^{2} dan -2x^{2} untuk mendapatkan 2x^{2}.
2x^{2}-8x-2+2=0
Tambahkan 2 pada kedua-dua belah.
2x^{2}-8x=0
Tambahkan -2 dan 2 untuk dapatkan 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 2 dengan a, -8 dengan b dan 0 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±8}{2\times 2}
Ambil punca kuasa dua \left(-8\right)^{2}.
x=\frac{8±8}{2\times 2}
Nombor bertentangan -8 ialah 8.
x=\frac{8±8}{4}
Darabkan 2 kali 2.
x=\frac{16}{4}
Sekarang selesaikan persamaan x=\frac{8±8}{4} apabila ± ialah plus. Tambahkan 8 pada 8.
x=4
Bahagikan 16 dengan 4.
x=\frac{0}{4}
Sekarang selesaikan persamaan x=\frac{8±8}{4} apabila ± ialah minus. Tolak 8 daripada 8.
x=0
Bahagikan 0 dengan 4.
x=4 x=0
Persamaan kini diselesaikan.
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
Pemboleh ubah x tidak boleh sama dengan sebarang nilai -1,1 kerana pembahagian dengan sifar tidak ditakrifkan. Darabkan kedua-dua belah persamaan dengan \left(x-1\right)\left(x+1\right), gandaan sepunya terkecil sebanyak x+1,x-1.
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
Gunakan sifat kalis agihan untuk mendarab x-1 dengan 2x-3 dan gabungkan sebutan yang serupa.
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
Gunakan sifat kalis agihan untuk mendarab x+1 dengan 2x-5 dan gabungkan sebutan yang serupa.
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
Gabungkan 2x^{2} dan 2x^{2} untuk mendapatkan 4x^{2}.
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
Gabungkan -5x dan -3x untuk mendapatkan -8x.
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
Tolak 5 daripada 3 untuk mendapatkan -2.
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
Gunakan sifat kalis agihan untuk mendarab 2 dengan x-1.
4x^{2}-8x-2=2x^{2}-2
Gunakan sifat kalis agihan untuk mendarab 2x-2 dengan x+1 dan gabungkan sebutan yang serupa.
4x^{2}-8x-2-2x^{2}=-2
Tolak 2x^{2} daripada kedua-dua belah.
2x^{2}-8x-2=-2
Gabungkan 4x^{2} dan -2x^{2} untuk mendapatkan 2x^{2}.
2x^{2}-8x=-2+2
Tambahkan 2 pada kedua-dua belah.
2x^{2}-8x=0
Tambahkan -2 dan 2 untuk dapatkan 0.
\frac{2x^{2}-8x}{2}=\frac{0}{2}
Bahagikan kedua-dua belah dengan 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{0}{2}
Membahagi dengan 2 membuat asal pendaraban dengan 2.
x^{2}-4x=\frac{0}{2}
Bahagikan -8 dengan 2.
x^{2}-4x=0
Bahagikan 0 dengan 2.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
Bahagikan -4 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -2. Kemudian tambahkan kuasa dua -2 pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-4x+4=4
Kuasa dua -2.
\left(x-2\right)^{2}=4
Faktor x^{2}-4x+4. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-2=2 x-2=-2
Permudahkan.
x=4 x=0
Tambahkan 2 pada kedua-dua belah persamaan.