Nilaikan
\frac{5x^{2}-3x-5}{x^{2}\left(x^{2}-1\right)}
Kembangkan
\frac{5x^{2}-3x-5}{x^{2}\left(x^{2}-1\right)}
Graf
Kongsi
Disalin ke papan klip
\frac{2x}{\left(x-1\right)x^{2}}-\frac{5}{\left(x-1\right)x^{2}}+\frac{3}{\left(x-1\right)\left(x+1\right)}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Gandaan sepunya terkecil x\left(x-1\right) dan x^{2}\left(x-1\right) ialah \left(x-1\right)x^{2}. Darabkan \frac{2}{x\left(x-1\right)} kali \frac{x}{x}.
\frac{2x-5}{\left(x-1\right)x^{2}}+\frac{3}{\left(x-1\right)\left(x+1\right)}
Oleh kerana \frac{2x}{\left(x-1\right)x^{2}} dan \frac{5}{\left(x-1\right)x^{2}} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\frac{\left(2x-5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{2}}+\frac{3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Gandaan sepunya terkecil \left(x-1\right)x^{2} dan \left(x-1\right)\left(x+1\right) ialah \left(x-1\right)\left(x+1\right)x^{2}. Darabkan \frac{2x-5}{\left(x-1\right)x^{2}} kali \frac{x+1}{x+1}. Darabkan \frac{3}{\left(x-1\right)\left(x+1\right)} kali \frac{x^{2}}{x^{2}}.
\frac{\left(2x-5\right)\left(x+1\right)+3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Oleh kerana \frac{\left(2x-5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{2}} dan \frac{3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}} mempunyai penyebut yang sama, tambahkan dengan menambahkan pengangka.
\frac{2x^{2}+2x-5x-5+3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Lakukan pendaraban dalam \left(2x-5\right)\left(x+1\right)+3x^{2}.
\frac{5x^{2}-3x-5}{\left(x-1\right)\left(x+1\right)x^{2}}
Gabungkan sebutan serupa dalam 2x^{2}+2x-5x-5+3x^{2}.
\frac{5x^{2}-3x-5}{x^{4}-x^{2}}
Kembangkan \left(x-1\right)\left(x+1\right)x^{2}.
\frac{2x}{\left(x-1\right)x^{2}}-\frac{5}{\left(x-1\right)x^{2}}+\frac{3}{\left(x-1\right)\left(x+1\right)}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Gandaan sepunya terkecil x\left(x-1\right) dan x^{2}\left(x-1\right) ialah \left(x-1\right)x^{2}. Darabkan \frac{2}{x\left(x-1\right)} kali \frac{x}{x}.
\frac{2x-5}{\left(x-1\right)x^{2}}+\frac{3}{\left(x-1\right)\left(x+1\right)}
Oleh kerana \frac{2x}{\left(x-1\right)x^{2}} dan \frac{5}{\left(x-1\right)x^{2}} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\frac{\left(2x-5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{2}}+\frac{3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Gandaan sepunya terkecil \left(x-1\right)x^{2} dan \left(x-1\right)\left(x+1\right) ialah \left(x-1\right)\left(x+1\right)x^{2}. Darabkan \frac{2x-5}{\left(x-1\right)x^{2}} kali \frac{x+1}{x+1}. Darabkan \frac{3}{\left(x-1\right)\left(x+1\right)} kali \frac{x^{2}}{x^{2}}.
\frac{\left(2x-5\right)\left(x+1\right)+3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Oleh kerana \frac{\left(2x-5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{2}} dan \frac{3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}} mempunyai penyebut yang sama, tambahkan dengan menambahkan pengangka.
\frac{2x^{2}+2x-5x-5+3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Lakukan pendaraban dalam \left(2x-5\right)\left(x+1\right)+3x^{2}.
\frac{5x^{2}-3x-5}{\left(x-1\right)\left(x+1\right)x^{2}}
Gabungkan sebutan serupa dalam 2x^{2}+2x-5x-5+3x^{2}.
\frac{5x^{2}-3x-5}{x^{4}-x^{2}}
Kembangkan \left(x-1\right)\left(x+1\right)x^{2}.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}