मुख्य सामग्री वगळा
x साठी सोडवा (जटिल उत्तर)
Tick mark Image
x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x^{3}+2x^{2}+x-18=0
दोन्ही बाजूंकडून 18 वजा करा.
±18,±9,±6,±3,±2,±1
रॅशनल परिमेय प्रमेयानुसार, सर्व बहुपदीय रॅशनल परिमेय \frac{p}{q} स्वरूपात आहेत, जेथे p स्थिर टर्म -18 ला विभाजित करते आणि q अग्रगण्य गुणांक 1 ला विभाजित करते. सर्व उमेदवारांची यादी करा \frac{p}{q}.
x=2
तंतोतंत मूल्‍यानुसार अगदी लहानपासून सुरू करून, सर्व इंटिगर मूल्‍ये वापरण्‍याचा प्रयत्‍न करून असे एक रूट करा. कोणतेही इंटिगर रूट्स आढळले नसल्‍यास, अंश वापरून पाहा.
x^{2}+4x+9=0
फॅक्‍टर थिओरेमनुसार, प्रत्येक परिमेय k साठी x-k बहुपदी अवयव आहे. x^{2}+4x+9 मिळविण्यासाठी x^{3}+2x^{2}+x-18 ला x-2 ने भागाकार करा. निकाल 0 समान असताना समीकरण सोडवा.
x=\frac{-4±\sqrt{4^{2}-4\times 1\times 9}}{2}
फॉर्म ax^{2}+bx+c=0 ची समीकरणे वर्गसमीकरण सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडवली जाऊ शकतात. वर्गसमीकरण सुत्रामध्ये a साठी 1, b साठी 4 आणि c साठी 9 विकल्प आहे.
x=\frac{-4±\sqrt{-20}}{2}
गणना करा.
x=-\sqrt{5}i-2 x=-2+\sqrt{5}i
जेव्हा ± धन असते तेव्हा आणि ± ऋण असते तेव्हा x^{2}+4x+9=0 समीकरण सोडवा.
x=2 x=-\sqrt{5}i-2 x=-2+\sqrt{5}i
आढळलेले सर्व सोल्‍यूशन सूचीबद्ध करा.
x^{3}+2x^{2}+x-18=0
दोन्ही बाजूंकडून 18 वजा करा.
±18,±9,±6,±3,±2,±1
रॅशनल परिमेय प्रमेयानुसार, सर्व बहुपदीय रॅशनल परिमेय \frac{p}{q} स्वरूपात आहेत, जेथे p स्थिर टर्म -18 ला विभाजित करते आणि q अग्रगण्य गुणांक 1 ला विभाजित करते. सर्व उमेदवारांची यादी करा \frac{p}{q}.
x=2
तंतोतंत मूल्‍यानुसार अगदी लहानपासून सुरू करून, सर्व इंटिगर मूल्‍ये वापरण्‍याचा प्रयत्‍न करून असे एक रूट करा. कोणतेही इंटिगर रूट्स आढळले नसल्‍यास, अंश वापरून पाहा.
x^{2}+4x+9=0
फॅक्‍टर थिओरेमनुसार, प्रत्येक परिमेय k साठी x-k बहुपदी अवयव आहे. x^{2}+4x+9 मिळविण्यासाठी x^{3}+2x^{2}+x-18 ला x-2 ने भागाकार करा. निकाल 0 समान असताना समीकरण सोडवा.
x=\frac{-4±\sqrt{4^{2}-4\times 1\times 9}}{2}
फॉर्म ax^{2}+bx+c=0 ची समीकरणे वर्गसमीकरण सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडवली जाऊ शकतात. वर्गसमीकरण सुत्रामध्ये a साठी 1, b साठी 4 आणि c साठी 9 विकल्प आहे.
x=\frac{-4±\sqrt{-20}}{2}
गणना करा.
x\in \emptyset
एका ऋण संख्येचे वर्गमूळ वास्तविक क्षेत्रामध्ये परिभाषित केले नसल्यामुळे, कोणतेही निरसन नाहीत.
x=2
आढळलेले सर्व सोल्‍यूशन सूचीबद्ध करा.