x साठी सोडवा
x=-1
x=10
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
a+b=-9 ab=-10
समीकरण सोडवण्यासाठी, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सूत्र वापरून x^{2}-9x-10 घटक. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,-10 2,-5
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b नकारात्मक असल्याने, नकारात्मक नंबरमध्ये सकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -10 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-10=-9 2-5=-3
प्रत्येक पेअरची बेरीज करा.
a=-10 b=1
बेरी -9 येत असलेल्या पेअरचे निरसन.
\left(x-10\right)\left(x+1\right)
मिळविलेले मूल्य वापरून \left(x+a\right)\left(x+b\right) घटक पदावली पुन्हा लिहा.
x=10 x=-1
समीकरण निरसन शोधण्यासाठी, x-10=0 आणि x+1=0 सोडवा.
a+b=-9 ab=1\left(-10\right)=-10
समीकरण सोडवण्यासाठी, समूहीकृत करून डाव्या हाताच्या बाजूला ठेवा. अगोदर, डाव्या हाताची बाजू x^{2}+ax+bx-10 म्हणून पुन्हा लिहावी लागेल. a आणि b शोधण्यासाठी, सोडवण्यासाठी सिस्टम सेट करा.
1,-10 2,-5
ab नकारात्मक असल्याने, a व b मध्ये विरुद्ध चिन्हे आहेत. a+b नकारात्मक असल्याने, नकारात्मक नंबरमध्ये सकारात्मकतेपेक्षा परिपूर्ण मूल्य आहे. -10 उत्पादन देत असलेल्या असे सर्व इंटिगर पेअर्स सूचीबद्ध करा.
1-10=-9 2-5=-3
प्रत्येक पेअरची बेरीज करा.
a=-10 b=1
बेरी -9 येत असलेल्या पेअरचे निरसन.
\left(x^{2}-10x\right)+\left(x-10\right)
\left(x^{2}-10x\right)+\left(x-10\right) प्रमाणे x^{2}-9x-10 पुन्हा लिहा.
x\left(x-10\right)+x-10
x^{2}-10x मधील x घटक काढा.
\left(x-10\right)\left(x+1\right)
वितरण गुणधर्माचा वापर करून x-10 सामान्य पदाचे घटक काढा.
x=10 x=-1
समीकरण निरसन शोधण्यासाठी, x-10=0 आणि x+1=0 सोडवा.
x^{2}-9x-10=0
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-10\right)}}{2}
हे समीकरण मानक स्वरूपात आहे: ax^{2}+bx+c=0. वर्गसमीकरण सूत्र, \frac{-b±\sqrt{b^{2}-4ac}}{2a} मध्ये a साठी 1, b साठी -9 आणि c साठी -10 विकल्प म्हणून ठेवा.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-10\right)}}{2}
वर्ग -9.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2}
-10 ला -4 वेळा गुणाकार करा.
x=\frac{-\left(-9\right)±\sqrt{121}}{2}
81 ते 40 जोडा.
x=\frac{-\left(-9\right)±11}{2}
121 चा वर्गमूळ घ्या.
x=\frac{9±11}{2}
-9 ची विरूद्ध संख्या 9 आहे.
x=\frac{20}{2}
आता ± धन असताना समीकरण x=\frac{9±11}{2} सोडवा. 9 ते 11 जोडा.
x=10
20 ला 2 ने भागा.
x=-\frac{2}{2}
आता ± ऋण असताना समीकरण x=\frac{9±11}{2} सोडवा. 9 मधून 11 वजा करा.
x=-1
-2 ला 2 ने भागा.
x=10 x=-1
समीकरण आता सोडवली आहे.
x^{2}-9x-10=0
यासारखी वर्गसमीकरणे वर्ग पूर्ण करून सोडविता येतात. वर्ग पूर्ण करण्यासाठी, समीकरण प्रथम x^{2}+bx=c फॉर्ममध्ये असले पाहिजे.
x^{2}-9x-10-\left(-10\right)=-\left(-10\right)
समीकरणाच्या दोन्ही बाजूस 10 जोडा.
x^{2}-9x=-\left(-10\right)
-10 त्याच्यामधूनच त्याला वजा केल्यास 0 उरते.
x^{2}-9x=10
0 मधून -10 वजा करा.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=10+\left(-\frac{9}{2}\right)^{2}
-9 चा भागाकार करा, x टर्म चा गुणांक, -\frac{9}{2} मिळवण्यासाठी 2 द्वारे. नंतर समीकरणाच्या दोन्ही बाजूंना -\frac{9}{2} चा वर्ग जोडा. ही पायरी समीकरणाच्या डाव्या बाजूला पूर्ण वर्ग बनवते.
x^{2}-9x+\frac{81}{4}=10+\frac{81}{4}
अपूर्णांकाचा अंश आणि विभाजक या दोन्हींचा वर्ग काढून -\frac{9}{2} वर्ग घ्या.
x^{2}-9x+\frac{81}{4}=\frac{121}{4}
10 ते \frac{81}{4} जोडा.
\left(x-\frac{9}{2}\right)^{2}=\frac{121}{4}
घटक x^{2}-9x+\frac{81}{4}. सामान्यतः, x^{2}+bx+c पूर्ण वर्ग असतो तेव्हा, \left(x+\frac{b}{2}\right)^{2} याचे घटक पाडता येतात.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
समीकरणाच्या दोन्ही बाजूंचा वर्गमूळ घ्या.
x-\frac{9}{2}=\frac{11}{2} x-\frac{9}{2}=-\frac{11}{2}
सरलीकृत करा.
x=10 x=-1
समीकरणाच्या दोन्ही बाजूस \frac{9}{2} जोडा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}