मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x+y=8,2x-3y=1
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+y=8
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-y+8
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
2\left(-y+8\right)-3y=1
इतर समीकरणामध्ये x साठी -y+8 चा विकल्प वापरा, 2x-3y=1.
-2y+16-3y=1
-y+8 ला 2 वेळा गुणाकार करा.
-5y+16=1
-2y ते -3y जोडा.
-5y=-15
समीकरणाच्या दोन्ही बाजूंमधून 16 वजा करा.
y=3
दोन्ही बाजूंना -5 ने विभागा.
x=-3+8
x=-y+8 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=5
8 ते -3 जोडा.
x=5,y=3
सिस्टम आता सोडवली आहे.
x+y=8,2x-3y=1
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\1\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&1\\2&-3\end{matrix}\right))\left(\begin{matrix}1&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&1\\2&-3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{1}{-3-2}\\-\frac{2}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}8\\1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}8\\1\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 8+\frac{1}{5}\\\frac{2}{5}\times 8-\frac{1}{5}\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
अंकगणित करा.
x=5,y=3
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+y=8,2x-3y=1
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x+2y=2\times 8,2x-3y=1
x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
2x+2y=16,2x-3y=1
सरलीकृत करा.
2x-2x+2y+3y=16-1
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x+2y=16 मधून 2x-3y=1 वजा करा.
2y+3y=16-1
2x ते -2x जोडा. 2x आणि -2x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
5y=16-1
2y ते 3y जोडा.
5y=15
16 ते -1 जोडा.
y=3
दोन्ही बाजूंना 5 ने विभागा.
2x-3\times 3=1
2x-3y=1 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x-9=1
3 ला -3 वेळा गुणाकार करा.
2x=10
समीकरणाच्या दोन्ही बाजूस 9 जोडा.
x=5
दोन्ही बाजूंना 2 ने विभागा.
x=5,y=3
सिस्टम आता सोडवली आहे.