b साठी सोडवा
b=-\frac{\sqrt{3}a}{3}+\frac{2\sqrt{3}}{3}-1
a साठी सोडवा
a=-\sqrt{3}b+2-\sqrt{3}
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
अंश आणि विभाजक \sqrt{3}-1 ने गुणाकार करून \frac{\sqrt{3}-1}{\sqrt{3}+1} चे विभाजक तर्कसंगत करा.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right) वाचारात घ्या. हा नियम वापरून चौरसांच्या फरकामध्ये गुणाकाराची स्थित्यंतरे केली जाऊ शकतात: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}
वर्ग \sqrt{3}. वर्ग 1.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}
2 मिळविण्यासाठी 3 मधून 1 वजा करा.
a+b\sqrt{3}=\frac{\left(\sqrt{3}-1\right)^{2}}{2}
\left(\sqrt{3}-1\right)^{2} मिळविण्यासाठी \sqrt{3}-1 आणि \sqrt{3}-1 चा गुणाकार करा.
a+b\sqrt{3}=\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}
\left(\sqrt{3}-1\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
a+b\sqrt{3}=\frac{3-2\sqrt{3}+1}{2}
\sqrt{3} ची वर्ग संख्या 3 आहे.
a+b\sqrt{3}=\frac{4-2\sqrt{3}}{2}
4 मिळविण्यासाठी 3 आणि 1 जोडा.
a+b\sqrt{3}=2-\sqrt{3}
2-\sqrt{3} मिळविण्यासाठी 4-2\sqrt{3} च्या प्रत्येक टर्मला 2 ने भागा.
b\sqrt{3}=2-\sqrt{3}-a
दोन्ही बाजूंकडून a वजा करा.
\sqrt{3}b=-a+2-\sqrt{3}
समीकरण मानक रूपामध्ये आहे.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
दोन्ही बाजूंना \sqrt{3} ने विभागा.
b=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
\sqrt{3} ने केलेला भागाकार \sqrt{3} ने केलेला गुणाकार पूर्ववत करतो.
b=\frac{\sqrt{3}\left(-a+2-\sqrt{3}\right)}{3}
2-\sqrt{3}-a ला \sqrt{3} ने भागा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}