घटक
4p\left(1-5p\right)
मूल्यांकन करा
4p\left(1-5p\right)
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
4\left(p-5p^{2}\right)
4 मधून घटक काढा.
p\left(1-5p\right)
p-5p^{2} वाचारात घ्या. p मधून घटक काढा.
4p\left(-5p+1\right)
पूर्ण घटक अभिव्यक्ती पुन्हा लिहा.
-20p^{2}+4p=0
वर्गसमीकरण बहूपदी ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) परिवर्तन वापरून फॅक्टर करू शकतात, ज्यात x_{1} आणि x_{2} वर्गसमीकरण समीकरणाचे निरसन आहेत ax^{2}+bx+c=0.
p=\frac{-4±\sqrt{4^{2}}}{2\left(-20\right)}
ax^{2}+bx+c=0 स्वरूपाची सर्व समीकरणे वर्गसमीकरण सूत्र वापरून सोडविता येतील: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. वर्गसमीकरण सूत्र दोन निरसन देते, एक, जेव्हा ± धनात्मक असते आणि दुसरे, जेव्हा ते ऋणात्मक असते.
p=\frac{-4±4}{2\left(-20\right)}
4^{2} चा वर्गमूळ घ्या.
p=\frac{-4±4}{-40}
-20 ला 2 वेळा गुणाकार करा.
p=\frac{0}{-40}
आता ± धन असताना समीकरण p=\frac{-4±4}{-40} सोडवा. -4 ते 4 जोडा.
p=0
0 ला -40 ने भागा.
p=-\frac{8}{-40}
आता ± ऋण असताना समीकरण p=\frac{-4±4}{-40} सोडवा. -4 मधून 4 वजा करा.
p=\frac{1}{5}
8 एक्स्ट्रॅक्ट आणि रद्द करून \frac{-8}{-40} अंश निम्नतम टर्म्सला कमी करा.
-20p^{2}+4p=-20p\left(p-\frac{1}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) वापरून मूळ अभिव्यक्तीचे फॅक्टर करा. x_{1} साठी 0 आणि x_{2} साठी \frac{1}{5} बदला.
-20p^{2}+4p=-20p\times \frac{-5p+1}{-5}
सामान्य विभाजक शोधून आणि अंशांची वजाबाकी करून p मधून \frac{1}{5} वजा करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
-20p^{2}+4p=4p\left(-5p+1\right)
-20 आणि -5 मधील सर्वात मोठा सामान्य घटक 5 रद्द करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}