मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
x संदर्भात फरक करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}}
पदावली सरलीकृत करण्यासाठी घातांकाचे नियम वापरा.
x^{\frac{7}{5}\left(-\frac{5}{3}\right)}
दुसर्‍या घातामध्ये एक घात करण्यासाठी, घातांकांचा गुणाकार करा.
\frac{1}{x^{\frac{7}{3}}}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून -\frac{5}{3} चा \frac{7}{5} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{7}{5}})
दोन डिफरंशिएबल फंक्शन f\left(u\right) आणि u=g\left(x\right) यांची F रचना असल्यास, म्हणजेच, जर F\left(x\right)=f\left(g\left(x\right)\right), तर F चे कृदंत हे u वेळा संदर्भात f चे कृदंत x च्या संदर्भात g चे कृदंत, म्हणजेच, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}\times \frac{7}{5}x^{\frac{7}{5}-1}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
-\frac{7}{3}x^{\frac{2}{5}}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}
सरलीकृत करा.