D साठी सोडवा (जटिल उत्तर)
D=e^{\frac{Im(y)arg(x)+iRe(y)arg(x)}{\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}}-\frac{2\pi n_{1}iRe(y)}{\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}}-\frac{2\pi n_{1}Im(y)}{\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}}}\left(|x|\right)^{\frac{Re(y)-iIm(y)}{\left(Re(y)\right)^{2}+\left(Im(y)\right)^{2}}}
n_{1}\in \mathrm{Z}
x साठी सोडवा (जटिल उत्तर)
x=\left(-D\right)^{y}
D साठी सोडवा
\left\{\begin{matrix}D=-x^{\frac{1}{y}}\text{, }&\left(Numerator(y)\text{bmod}2=1\text{ and }Denominator(y)\text{bmod}2=1\text{ and }x<0\text{ and }x^{\frac{1}{y}}\neq 0\right)\text{ or }\left(x=0\text{ and }y>0\right)\text{ or }\left(x>0\text{ and }y\neq 0\right)\\D=x^{\frac{1}{y}}\text{, }&\left(x<0\text{ and }Numerator(y)\text{bmod}2=1\text{ and }Numerator(y)\text{bmod}2=0\text{ and }Denominator(y)\text{bmod}2=1\text{ and }x^{\frac{1}{y}}\neq 0\right)\text{ or }\left(y\neq 0\text{ and }x>0\text{ and }Numerator(y)\text{bmod}2=0\text{ and }Denominator(y)\text{bmod}2=1\right)\text{ or }\left(Numerator(y)\text{bmod}2=0\text{ and }x=0\text{ and }y>0\right)\text{ or }\left(x>0\text{ and }y\neq 0\text{ and }x^{\frac{1}{y}}<0\text{ and }Numerator(y)\text{bmod}2=0\right)\\D\neq 0\text{, }&y=0\text{ and }x=1\end{matrix}\right.
x साठी सोडवा
x=\left(-D\right)^{y}
\left(D>0\text{ and }Denominator(y)\text{bmod}2=1\right)\text{ or }\left(D=0\text{ and }y>0\right)\text{ or }D<0
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}