β संदर्भात फरक करा
\cos(\beta )
मूल्यांकन करा
\sin(\beta )
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{\mathrm{d}}{\mathrm{d}\beta }(\sin(\beta ))=\left(\lim_{h\to 0}\frac{\sin(\beta +h)-\sin(\beta )}{h}\right)
f\left(x\right) फंक्शनसाठी, डेरिव्हेटिव्ह \frac{f\left(x+h\right)-f\left(x\right)}{h} ची मर्यादा आहे जसे की h 0 पर्यंत जातो, ती मर्यादा अस्तित्वात असल्यास.
\lim_{h\to 0}\frac{\sin(h+\beta )-\sin(\beta )}{h}
साइनसाठी बेरजेचे सूत्र वापरा.
\lim_{h\to 0}\frac{\sin(\beta )\left(\cos(h)-1\right)+\cos(\beta )\sin(h)}{h}
\sin(\beta ) मधून घटक काढा.
\left(\lim_{h\to 0}\sin(\beta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\beta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
मर्यादा पुन्हा लिहा.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
कंम्प्युटिंग मर्यादेवेळी h 0 कडे जाते तेव्हा \beta हा स्थिरांक आहे हे तथ्य वापरा.
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta )
\lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } मर्यादा 1 आहे.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
\lim_{h\to 0}\frac{\cos(h)-1}{h} मर्यादेचे मूल्यांकन करण्यासाठी, प्रथम अंश आणि विभाजक यांचा \cos(h)+1 ने गुणाकार करा.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)-1 ला \cos(h)+1 वेळा गुणाकार करा.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
पायथागोरसची आयडेंटिटी वापरा.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
मर्यादा पुन्हा लिहा.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
\lim_{\beta \to 0}\frac{\sin(\beta )}{\beta } मर्यादा 1 आहे.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} हे 0 येथे सलग आहे हे तथ्य वापरा.
\cos(\beta )
\sin(\beta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\beta ) पदावलीमध्ये 0 मूल्याचा विकल्प वापरा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}