y, x साठी सोडवा
x=9
y=-3
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
y-\frac{1}{3}x=-6
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{3}x वजा करा.
y-\frac{1}{9}x=-4
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{9}x वजा करा.
y-\frac{1}{3}x=-6,y-\frac{1}{9}x=-4
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
y-\frac{1}{3}x=-6
समान चिन्हाच्या डाव्या बाजूला y विलग करून, y साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
y=\frac{1}{3}x-6
समीकरणाच्या दोन्ही बाजूस \frac{x}{3} जोडा.
\frac{1}{3}x-6-\frac{1}{9}x=-4
इतर समीकरणामध्ये y साठी \frac{x}{3}-6 चा विकल्प वापरा, y-\frac{1}{9}x=-4.
\frac{2}{9}x-6=-4
\frac{x}{3} ते -\frac{x}{9} जोडा.
\frac{2}{9}x=2
समीकरणाच्या दोन्ही बाजूस 6 जोडा.
x=9
समीकरणाच्या दोन्ही बाजूंना \frac{2}{9} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
y=\frac{1}{3}\times 9-6
y=\frac{1}{3}x-6 मध्ये x साठी 9 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=3-6
9 ला \frac{1}{3} वेळा गुणाकार करा.
y=-3
-6 ते 3 जोडा.
y=-3,x=9
सिस्टम आता सोडवली आहे.
y-\frac{1}{3}x=-6
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{3}x वजा करा.
y-\frac{1}{9}x=-4
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{9}x वजा करा.
y-\frac{1}{3}x=-6,y-\frac{1}{9}x=-4
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\-4\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{1}{9}\end{matrix}\right))\left(\begin{matrix}-6\\-4\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{9}}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}\\-\frac{1}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}&\frac{1}{-\frac{1}{9}-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\-\frac{9}{2}&\frac{9}{2}\end{matrix}\right)\left(\begin{matrix}-6\\-4\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-6\right)+\frac{3}{2}\left(-4\right)\\-\frac{9}{2}\left(-6\right)+\frac{9}{2}\left(-4\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\9\end{matrix}\right)
अंकगणित करा.
y=-3,x=9
मॅट्रिक्सचे y आणि x घटक बाहेर काढा.
y-\frac{1}{3}x=-6
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{3}x वजा करा.
y-\frac{1}{9}x=-4
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून \frac{1}{9}x वजा करा.
y-\frac{1}{3}x=-6,y-\frac{1}{9}x=-4
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
y-y-\frac{1}{3}x+\frac{1}{9}x=-6+4
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून y-\frac{1}{3}x=-6 मधून y-\frac{1}{9}x=-4 वजा करा.
-\frac{1}{3}x+\frac{1}{9}x=-6+4
y ते -y जोडा. y आणि -y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-\frac{2}{9}x=-6+4
-\frac{x}{3} ते \frac{x}{9} जोडा.
-\frac{2}{9}x=-2
-6 ते 4 जोडा.
x=9
समीकरणाच्या दोन्ही बाजूंना -\frac{2}{9} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
y-\frac{1}{9}\times 9=-4
y-\frac{1}{9}x=-4 मध्ये x साठी 9 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y-1=-4
9 ला -\frac{1}{9} वेळा गुणाकार करा.
y=-3
समीकरणाच्या दोन्ही बाजूस 1 जोडा.
y=-3,x=9
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}