x, y साठी सोडवा
x=1
y=3
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
x-2y=-5,3x+y=6
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x-2y=-5
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=2y-5
समीकरणाच्या दोन्ही बाजूस 2y जोडा.
3\left(2y-5\right)+y=6
इतर समीकरणामध्ये x साठी 2y-5 चा विकल्प वापरा, 3x+y=6.
6y-15+y=6
2y-5 ला 3 वेळा गुणाकार करा.
7y-15=6
6y ते y जोडा.
7y=21
समीकरणाच्या दोन्ही बाजूस 15 जोडा.
y=3
दोन्ही बाजूंना 7 ने विभागा.
x=2\times 3-5
x=2y-5 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=6-5
3 ला 2 वेळा गुणाकार करा.
x=1
-5 ते 6 जोडा.
x=1,y=3
सिस्टम आता सोडवली आहे.
x-2y=-5,3x+y=6
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\6\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}1&-2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}-5\\6\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-2\\3&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}-5\\6\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}-5\\6\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\times 3\right)}&-\frac{-2}{1-\left(-2\times 3\right)}\\-\frac{3}{1-\left(-2\times 3\right)}&\frac{1}{1-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-5\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-5\\6\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-5\right)+\frac{2}{7}\times 6\\-\frac{3}{7}\left(-5\right)+\frac{1}{7}\times 6\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
अंकगणित करा.
x=1,y=3
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x-2y=-5,3x+y=6
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3x+3\left(-2\right)y=3\left(-5\right),3x+y=6
x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
3x-6y=-15,3x+y=6
सरलीकृत करा.
3x-3x-6y-y=-15-6
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 3x-6y=-15 मधून 3x+y=6 वजा करा.
-6y-y=-15-6
3x ते -3x जोडा. 3x आणि -3x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-7y=-15-6
-6y ते -y जोडा.
-7y=-21
-15 ते -6 जोडा.
y=3
दोन्ही बाजूंना -7 ने विभागा.
3x+3=6
3x+y=6 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x=3
समीकरणाच्या दोन्ही बाजूंमधून 3 वजा करा.
x=1
दोन्ही बाजूंना 3 ने विभागा.
x=1,y=3
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}