मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x+y=1,x-2y=14
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+y=1
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-y+1
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
-y+1-2y=14
इतर समीकरणामध्ये x साठी -y+1 चा विकल्प वापरा, x-2y=14.
-3y+1=14
-y ते -2y जोडा.
-3y=13
समीकरणाच्या दोन्ही बाजूंमधून 1 वजा करा.
y=-\frac{13}{3}
दोन्ही बाजूंना -3 ने विभागा.
x=-\left(-\frac{13}{3}\right)+1
x=-y+1 मध्ये y साठी -\frac{13}{3} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{13}{3}+1
-\frac{13}{3} ला -1 वेळा गुणाकार करा.
x=\frac{16}{3}
1 ते \frac{13}{3} जोडा.
x=\frac{16}{3},y=-\frac{13}{3}
सिस्टम आता सोडवली आहे.
x+y=1,x-2y=14
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\14\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&1\\1&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}+\frac{1}{3}\times 14\\\frac{1}{3}-\frac{1}{3}\times 14\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{3}\\-\frac{13}{3}\end{matrix}\right)
अंकगणित करा.
x=\frac{16}{3},y=-\frac{13}{3}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+y=1,x-2y=14
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
x-x+y+2y=1-14
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून x+y=1 मधून x-2y=14 वजा करा.
y+2y=1-14
x ते -x जोडा. x आणि -x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
3y=1-14
y ते 2y जोडा.
3y=-13
1 ते -14 जोडा.
y=-\frac{13}{3}
दोन्ही बाजूंना 3 ने विभागा.
x-2\left(-\frac{13}{3}\right)=14
x-2y=14 मध्ये y साठी -\frac{13}{3} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x+\frac{26}{3}=14
-\frac{13}{3} ला -2 वेळा गुणाकार करा.
x=\frac{16}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{26}{3} वजा करा.
x=\frac{16}{3},y=-\frac{13}{3}
सिस्टम आता सोडवली आहे.