मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

7x-6y=19,x-2y=5
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
7x-6y=19
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
7x=6y+19
समीकरणाच्या दोन्ही बाजूस 6y जोडा.
x=\frac{1}{7}\left(6y+19\right)
दोन्ही बाजूंना 7 ने विभागा.
x=\frac{6}{7}y+\frac{19}{7}
6y+19 ला \frac{1}{7} वेळा गुणाकार करा.
\frac{6}{7}y+\frac{19}{7}-2y=5
इतर समीकरणामध्ये x साठी \frac{6y+19}{7} चा विकल्प वापरा, x-2y=5.
-\frac{8}{7}y+\frac{19}{7}=5
\frac{6y}{7} ते -2y जोडा.
-\frac{8}{7}y=\frac{16}{7}
समीकरणाच्या दोन्ही बाजूंमधून \frac{19}{7} वजा करा.
y=-2
समीकरणाच्या दोन्ही बाजूंना -\frac{8}{7} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{6}{7}\left(-2\right)+\frac{19}{7}
x=\frac{6}{7}y+\frac{19}{7} मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-12+19}{7}
-2 ला \frac{6}{7} वेळा गुणाकार करा.
x=1
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{19}{7} ते -\frac{12}{7} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=1,y=-2
सिस्टम आता सोडवली आहे.
7x-6y=19,x-2y=5
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}7&-6\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\5\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}7&-6\\1&-2\end{matrix}\right))\left(\begin{matrix}7&-6\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-2\end{matrix}\right))\left(\begin{matrix}19\\5\end{matrix}\right)
समीकरणाला \left(\begin{matrix}7&-6\\1&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-2\end{matrix}\right))\left(\begin{matrix}19\\5\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-2\end{matrix}\right))\left(\begin{matrix}19\\5\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7\left(-2\right)-\left(-6\right)}&-\frac{-6}{7\left(-2\right)-\left(-6\right)}\\-\frac{1}{7\left(-2\right)-\left(-6\right)}&\frac{7}{7\left(-2\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}19\\5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{3}{4}\\\frac{1}{8}&-\frac{7}{8}\end{matrix}\right)\left(\begin{matrix}19\\5\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 19-\frac{3}{4}\times 5\\\frac{1}{8}\times 19-\frac{7}{8}\times 5\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
अंकगणित करा.
x=1,y=-2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
7x-6y=19,x-2y=5
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
7x-6y=19,7x+7\left(-2\right)y=7\times 5
7x आणि x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 7 ने गुणाकार करा.
7x-6y=19,7x-14y=35
सरलीकृत करा.
7x-7x-6y+14y=19-35
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 7x-6y=19 मधून 7x-14y=35 वजा करा.
-6y+14y=19-35
7x ते -7x जोडा. 7x आणि -7x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
8y=19-35
-6y ते 14y जोडा.
8y=-16
19 ते -35 जोडा.
y=-2
दोन्ही बाजूंना 8 ने विभागा.
x-2\left(-2\right)=5
x-2y=5 मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x+4=5
-2 ला -2 वेळा गुणाकार करा.
x=1
समीकरणाच्या दोन्ही बाजूंमधून 4 वजा करा.
x=1,y=-2
सिस्टम आता सोडवली आहे.