x, y साठी सोडवा
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
y=-2
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
3x+2y=4,6x+3y=10
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x+2y=4
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=-2y+4
समीकरणाच्या दोन्ही बाजूंमधून 2y वजा करा.
x=\frac{1}{3}\left(-2y+4\right)
दोन्ही बाजूंना 3 ने विभागा.
x=-\frac{2}{3}y+\frac{4}{3}
-2y+4 ला \frac{1}{3} वेळा गुणाकार करा.
6\left(-\frac{2}{3}y+\frac{4}{3}\right)+3y=10
इतर समीकरणामध्ये x साठी \frac{-2y+4}{3} चा विकल्प वापरा, 6x+3y=10.
-4y+8+3y=10
\frac{-2y+4}{3} ला 6 वेळा गुणाकार करा.
-y+8=10
-4y ते 3y जोडा.
-y=2
समीकरणाच्या दोन्ही बाजूंमधून 8 वजा करा.
y=-2
दोन्ही बाजूंना -1 ने विभागा.
x=-\frac{2}{3}\left(-2\right)+\frac{4}{3}
x=-\frac{2}{3}y+\frac{4}{3} मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{4+4}{3}
-2 ला -\frac{2}{3} वेळा गुणाकार करा.
x=\frac{8}{3}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{4}{3} ते \frac{4}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=\frac{8}{3},y=-2
सिस्टम आता सोडवली आहे.
3x+2y=4,6x+3y=10
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&2\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\10\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&2\\6&3\end{matrix}\right))\left(\begin{matrix}3&2\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&3\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&2\\6&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&3\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&3\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2\times 6}&-\frac{2}{3\times 3-2\times 6}\\-\frac{6}{3\times 3-2\times 6}&\frac{3}{3\times 3-2\times 6}\end{matrix}\right)\left(\begin{matrix}4\\10\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{2}{3}\\2&-1\end{matrix}\right)\left(\begin{matrix}4\\10\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4+\frac{2}{3}\times 10\\2\times 4-10\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\-2\end{matrix}\right)
अंकगणित करा.
x=\frac{8}{3},y=-2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x+2y=4,6x+3y=10
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
6\times 3x+6\times 2y=6\times 4,3\times 6x+3\times 3y=3\times 10
3x आणि 6x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 6 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
18x+12y=24,18x+9y=30
सरलीकृत करा.
18x-18x+12y-9y=24-30
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 18x+12y=24 मधून 18x+9y=30 वजा करा.
12y-9y=24-30
18x ते -18x जोडा. 18x आणि -18x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
3y=24-30
12y ते -9y जोडा.
3y=-6
24 ते -30 जोडा.
y=-2
दोन्ही बाजूंना 3 ने विभागा.
6x+3\left(-2\right)=10
6x+3y=10 मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
6x-6=10
-2 ला 3 वेळा गुणाकार करा.
6x=16
समीकरणाच्या दोन्ही बाजूस 6 जोडा.
x=\frac{8}{3}
दोन्ही बाजूंना 6 ने विभागा.
x=\frac{8}{3},y=-2
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}