x, y साठी सोडवा
x = \frac{114}{13} = 8\frac{10}{13} \approx 8.769230769
y=-\frac{12}{13}\approx -0.923076923
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{1}{2}x-\frac{2}{3}y-5=0,x+3y=6
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
\frac{1}{2}x-\frac{2}{3}y-5=0
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
\frac{1}{2}x-\frac{2}{3}y=5
समीकरणाच्या दोन्ही बाजूस 5 जोडा.
\frac{1}{2}x=\frac{2}{3}y+5
समीकरणाच्या दोन्ही बाजूस \frac{2y}{3} जोडा.
x=2\left(\frac{2}{3}y+5\right)
दोन्ही बाजूंना 2 ने गुणाकार करा.
x=\frac{4}{3}y+10
\frac{2y}{3}+5 ला 2 वेळा गुणाकार करा.
\frac{4}{3}y+10+3y=6
इतर समीकरणामध्ये x साठी \frac{4y}{3}+10 चा विकल्प वापरा, x+3y=6.
\frac{13}{3}y+10=6
\frac{4y}{3} ते 3y जोडा.
\frac{13}{3}y=-4
समीकरणाच्या दोन्ही बाजूंमधून 10 वजा करा.
y=-\frac{12}{13}
समीकरणाच्या दोन्ही बाजूंना \frac{13}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{4}{3}\left(-\frac{12}{13}\right)+10
x=\frac{4}{3}y+10 मध्ये y साठी -\frac{12}{13} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-\frac{16}{13}+10
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून -\frac{12}{13} चा \frac{4}{3} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=\frac{114}{13}
10 ते -\frac{16}{13} जोडा.
x=\frac{114}{13},y=-\frac{12}{13}
सिस्टम आता सोडवली आहे.
\frac{1}{2}x-\frac{2}{3}y-5=0,x+3y=6
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
समीकरणाला \left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{\frac{1}{2}\times 3-\left(-\frac{2}{3}\right)}&-\frac{-\frac{2}{3}}{\frac{1}{2}\times 3-\left(-\frac{2}{3}\right)}\\-\frac{1}{\frac{1}{2}\times 3-\left(-\frac{2}{3}\right)}&\frac{\frac{1}{2}}{\frac{1}{2}\times 3-\left(-\frac{2}{3}\right)}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{13}&\frac{4}{13}\\-\frac{6}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{13}\times 5+\frac{4}{13}\times 6\\-\frac{6}{13}\times 5+\frac{3}{13}\times 6\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{114}{13}\\-\frac{12}{13}\end{matrix}\right)
अंकगणित करा.
x=\frac{114}{13},y=-\frac{12}{13}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
\frac{1}{2}x-\frac{2}{3}y-5=0,x+3y=6
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
\frac{1}{2}x-\frac{2}{3}y-5=0,\frac{1}{2}x+\frac{1}{2}\times 3y=\frac{1}{2}\times 6
\frac{x}{2} आणि x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना \frac{1}{2} ने गुणाकार करा.
\frac{1}{2}x-\frac{2}{3}y-5=0,\frac{1}{2}x+\frac{3}{2}y=3
सरलीकृत करा.
\frac{1}{2}x-\frac{1}{2}x-\frac{2}{3}y-\frac{3}{2}y-5=-3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून \frac{1}{2}x-\frac{2}{3}y-5=0 मधून \frac{1}{2}x+\frac{3}{2}y=3 वजा करा.
-\frac{2}{3}y-\frac{3}{2}y-5=-3
\frac{x}{2} ते -\frac{x}{2} जोडा. \frac{x}{2} आणि -\frac{x}{2} रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-\frac{13}{6}y-5=-3
-\frac{2y}{3} ते -\frac{3y}{2} जोडा.
-\frac{13}{6}y=2
समीकरणाच्या दोन्ही बाजूस 5 जोडा.
y=-\frac{12}{13}
समीकरणाच्या दोन्ही बाजूंना -\frac{13}{6} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x+3\left(-\frac{12}{13}\right)=6
x+3y=6 मध्ये y साठी -\frac{12}{13} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x-\frac{36}{13}=6
-\frac{12}{13} ला 3 वेळा गुणाकार करा.
x=\frac{114}{13}
समीकरणाच्या दोन्ही बाजूस \frac{36}{13} जोडा.
x=\frac{114}{13},y=-\frac{12}{13}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}