m, n, o, p, q, r, s, t, u, v साठी सोडवा
v = -\frac{244}{15} = -16\frac{4}{15} \approx -16.266666667
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
12m+8-5\left(6m-1\right)=9\left(m-8\right)-6\left(7m-4\right)
पहिल्या समीकरणाचा विचार करा. 4 ला 3m+2 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
12m+8-30m+5=9\left(m-8\right)-6\left(7m-4\right)
-5 ला 6m-1 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
-18m+8+5=9\left(m-8\right)-6\left(7m-4\right)
-18m मिळविण्यासाठी 12m आणि -30m एकत्र करा.
-18m+13=9\left(m-8\right)-6\left(7m-4\right)
13 मिळविण्यासाठी 8 आणि 5 जोडा.
-18m+13=9m-72-6\left(7m-4\right)
9 ला m-8 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
-18m+13=9m-72-42m+24
-6 ला 7m-4 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
-18m+13=-33m-72+24
-33m मिळविण्यासाठी 9m आणि -42m एकत्र करा.
-18m+13=-33m-48
-48 मिळविण्यासाठी -72 आणि 24 जोडा.
-18m+13+33m=-48
दोन्ही बाजूंना 33m जोडा.
15m+13=-48
15m मिळविण्यासाठी -18m आणि 33m एकत्र करा.
15m=-48-13
दोन्ही बाजूंकडून 13 वजा करा.
15m=-61
-61 मिळविण्यासाठी -48 मधून 13 वजा करा.
m=-\frac{61}{15}
दोन्ही बाजूंना 15 ने विभागा.
n=4\left(-\frac{61}{15}\right)
दुसर्या समीकरणाचा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
n=-\frac{244}{15}
-\frac{244}{15} मिळविण्यासाठी 4 आणि -\frac{61}{15} चा गुणाकार करा.
o=-\frac{244}{15}
तिसर्या समीकरणाचा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
p=-\frac{244}{15}
चौथ्या समीकरणाचा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
q=-\frac{244}{15}
पाचव्या समीकरणाचा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
r=-\frac{244}{15}
समीकरण (6) चा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
s=-\frac{244}{15}
समीकरण (7) चा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
t=-\frac{244}{15}
समीकरण (8) चा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
u=-\frac{244}{15}
समीकरण (9) चा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
v=-\frac{244}{15}
समीकरण (10) चा विचार करा. चलाची ज्ञात मूल्ये समीकरणामध्ये प्रविष्ट करा.
m=-\frac{61}{15} n=-\frac{244}{15} o=-\frac{244}{15} p=-\frac{244}{15} q=-\frac{244}{15} r=-\frac{244}{15} s=-\frac{244}{15} t=-\frac{244}{15} u=-\frac{244}{15} v=-\frac{244}{15}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}