A, a, b साठी सोडवा (जटिल उत्तर)
A=2\pi n_{1}+\arctan(\frac{8}{15})\text{, }n_{1}\in \mathrm{Z}\text{, }a=\frac{5}{3}\approx 1.666666667\text{, }b=\frac{5}{3}\approx 1.666666667
A=2\pi n_{2}+\pi -\arctan(\frac{8}{15})\text{, }n_{2}\in \mathrm{Z}\text{, }a=-\frac{5}{3}\approx -1.666666667\text{, }b=-\frac{5}{3}\approx -1.666666667
A, a, b साठी सोडवा
\left\{\begin{matrix}A=2\pi n_{4}+\arcsin(\frac{8}{17})\text{, }n_{4}\in \mathrm{Z}\text{, }a=\frac{5}{3}\approx 1.666666667\text{, }b=\frac{5}{3}\approx 1.666666667\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\exists n_{2}\in \mathrm{Z}\text{ : }\left(\nexists n_{1}\in \mathrm{Z}\text{ : }2\pi n_{2}+\arcsin(\frac{8}{17})=\frac{\pi \left(2n_{1}+1\right)}{2}\right)\right)\\A=2\pi n_{5}+\pi -\arcsin(\frac{8}{17})\text{, }n_{5}\in \mathrm{Z}\text{, }a=-\frac{5}{3}\approx -1.666666667\text{, }b=-\frac{5}{3}\approx -1.666666667\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\left(\exists n_{3}\in \mathrm{Z}\text{ : }\left(\nexists n_{1}\in \mathrm{Z}\text{ : }2\pi n_{3}+\pi -\arcsin(\frac{8}{17})=\frac{\pi \left(2n_{1}+1\right)}{2}\right)\right)\end{matrix}\right.
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}