मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
विस्तृत करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
x^{2}+2x-1 घटक.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
अभिव्‍यक्‍ती जोडण्‍यासाठी किंवा विभाजित करण्‍यासाठी, त्‍यांचे विभाजक समान बनवण्‍यासाठी त्‍यांना विस्‍तृत करा. \frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} ला x वेळा गुणाकार करा.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} आणि \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right) मध्ये गुणाकार करा.
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x मधील टर्मप्रमाणे एकत्रित करा.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
विस्तृत करा \left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
\sqrt{2} ची वर्ग संख्या 2 आहे.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
-1 मिळविण्यासाठी -2 आणि 1 जोडा.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
x^{2}+2x-1 घटक.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
अभिव्‍यक्‍ती जोडण्‍यासाठी किंवा विभाजित करण्‍यासाठी, त्‍यांचे विभाजक समान बनवण्‍यासाठी त्‍यांना विस्‍तृत करा. \frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} ला x वेळा गुणाकार करा.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} आणि \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right) मध्ये गुणाकार करा.
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x मधील टर्मप्रमाणे एकत्रित करा.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
विस्तृत करा \left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
\sqrt{2} ची वर्ग संख्या 2 आहे.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
-1 मिळविण्यासाठी -2 आणि 1 जोडा.