मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
घटक
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

det(\left(\begin{matrix}4&0&-2\\2&2&1\\2&-1&8\end{matrix}\right))
विकर्ण पद्धत वापरून मॅट्रिक्सचा निर्धारक शोधा.
\left(\begin{matrix}4&0&-2&4&0\\2&2&1&2&2\\2&-1&8&2&-1\end{matrix}\right)
प्रथम दोन स्तंभ चौथा आणि पाचवा स्तंभ म्हणून पुनरावृत्त करून मूळ मॅट्रिक्स वाढवा.
4\times 2\times 8-2\times 2\left(-1\right)=68
उर्ध्व डाव्या प्रवेशापासून सुरूवात करून, अधोमुखी विकीर्णावर गुणाकार करा, आणि परिणामी उत्पादनांची बेरीज करा.
2\times 2\left(-2\right)-4=-12
खालील डाव्या प्रवेशापासून सुरूवात करून, वर विकिर्णावर गुणाकार करा, आणि परिणामी उत्पादनांची बेरीज करा.
68-\left(-12\right)
अधोमुखी विकर्ण उत्पादनांच्या बेरजेमधून उर्ध्वगामी विकर्ण उत्पादनांची बेरीज वजा करा.
80
68 मधून -12 वजा करा.
det(\left(\begin{matrix}4&0&-2\\2&2&1\\2&-1&8\end{matrix}\right))
मायनर्सद्वारा विस्तार पद्धत वापरून मॅट्रिक्सचा निर्धारक शोधा (यास कोफॅक्टर द्वारा विस्तार असेही ओळखले जाते).
4det(\left(\begin{matrix}2&1\\-1&8\end{matrix}\right))-2det(\left(\begin{matrix}2&2\\2&-1\end{matrix}\right))
मायनर्सद्वारा विस्तार करण्यासाठी, प्रथम पंक्तीतील प्रत्येक घटकाचा त्याच्या मायनरने गुणाकार करा, जो 2\times 2 मॅट्रिक्सचा निर्धारक आहे जे ते घटक समाविष्ट असलेली पंक्ती आणि स्तंभ हटवून तयार केली गेली, नंतर घटकाच्या स्थान चिन्हाने गुणाकार करा.
4\left(2\times 8-\left(-1\right)\right)-2\left(2\left(-1\right)-2\times 2\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, निर्धारक ad-bc आहे.
4\times 17-2\left(-6\right)
सरलीकृत करा.
80
अंतिम परिणाम मिळविण्यासाठी टर्म जोडा.