\left\{ \begin{array} { l } { x - 2 y = - 6 } \\ { 6 x + 8 y = 2 } \end{array} \right.
x, y साठी सोडवा
x = -\frac{11}{5} = -2\frac{1}{5} = -2.2
y = \frac{19}{10} = 1\frac{9}{10} = 1.9
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
x-2y=-6,6x+8y=2
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x-2y=-6
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=2y-6
समीकरणाच्या दोन्ही बाजूस 2y जोडा.
6\left(2y-6\right)+8y=2
इतर समीकरणामध्ये x साठी -6+2y चा विकल्प वापरा, 6x+8y=2.
12y-36+8y=2
-6+2y ला 6 वेळा गुणाकार करा.
20y-36=2
12y ते 8y जोडा.
20y=38
समीकरणाच्या दोन्ही बाजूस 36 जोडा.
y=\frac{19}{10}
दोन्ही बाजूंना 20 ने विभागा.
x=2\times \frac{19}{10}-6
x=2y-6 मध्ये y साठी \frac{19}{10} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{19}{5}-6
\frac{19}{10} ला 2 वेळा गुणाकार करा.
x=-\frac{11}{5}
-6 ते \frac{19}{5} जोडा.
x=-\frac{11}{5},y=\frac{19}{10}
सिस्टम आता सोडवली आहे.
x-2y=-6,6x+8y=2
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-2\\6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-2\\6&8\end{matrix}\right))\left(\begin{matrix}1&-2\\6&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&8\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-2\\6&8\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&8\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\6&8\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-\left(-2\times 6\right)}&-\frac{-2}{8-\left(-2\times 6\right)}\\-\frac{6}{8-\left(-2\times 6\right)}&\frac{1}{8-\left(-2\times 6\right)}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{10}\\-\frac{3}{10}&\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-6\right)+\frac{1}{10}\times 2\\-\frac{3}{10}\left(-6\right)+\frac{1}{20}\times 2\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{5}\\\frac{19}{10}\end{matrix}\right)
अंकगणित करा.
x=-\frac{11}{5},y=\frac{19}{10}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x-2y=-6,6x+8y=2
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
6x+6\left(-2\right)y=6\left(-6\right),6x+8y=2
x आणि 6x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 6 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
6x-12y=-36,6x+8y=2
सरलीकृत करा.
6x-6x-12y-8y=-36-2
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x-12y=-36 मधून 6x+8y=2 वजा करा.
-12y-8y=-36-2
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-20y=-36-2
-12y ते -8y जोडा.
-20y=-38
-36 ते -2 जोडा.
y=\frac{19}{10}
दोन्ही बाजूंना -20 ने विभागा.
6x+8\times \frac{19}{10}=2
6x+8y=2 मध्ये y साठी \frac{19}{10} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
6x+\frac{76}{5}=2
\frac{19}{10} ला 8 वेळा गुणाकार करा.
6x=-\frac{66}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{76}{5} वजा करा.
x=-\frac{11}{5}
दोन्ही बाजूंना 6 ने विभागा.
x=-\frac{11}{5},y=\frac{19}{10}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}