\left\{ \begin{array} { l } { x + y = 7 } \\ { - 4 x + y = - 3 } \end{array} \right.
x, y साठी सोडवा
x=2
y=5
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
x+y=7,-4x+y=-3
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+y=7
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-y+7
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
-4\left(-y+7\right)+y=-3
इतर समीकरणामध्ये x साठी -y+7 चा विकल्प वापरा, -4x+y=-3.
4y-28+y=-3
-y+7 ला -4 वेळा गुणाकार करा.
5y-28=-3
4y ते y जोडा.
5y=25
समीकरणाच्या दोन्ही बाजूस 28 जोडा.
y=5
दोन्ही बाजूंना 5 ने विभागा.
x=-5+7
x=-y+7 मध्ये y साठी 5 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=2
7 ते -5 जोडा.
x=2,y=5
सिस्टम आता सोडवली आहे.
x+y=7,-4x+y=-3
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&1\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-3\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&1\\-4&1\end{matrix}\right))\left(\begin{matrix}1&1\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-4&1\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&1\\-4&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-4&1\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-4&1\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\right)}&-\frac{1}{1-\left(-4\right)}\\-\frac{-4}{1-\left(-4\right)}&\frac{1}{1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}7\\-3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{1}{5}\\\frac{4}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}7\\-3\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 7-\frac{1}{5}\left(-3\right)\\\frac{4}{5}\times 7+\frac{1}{5}\left(-3\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
अंकगणित करा.
x=2,y=5
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+y=7,-4x+y=-3
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
x+4x+y-y=7+3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून x+y=7 मधून -4x+y=-3 वजा करा.
x+4x=7+3
y ते -y जोडा. y आणि -y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
5x=7+3
x ते 4x जोडा.
5x=10
7 ते 3 जोडा.
x=2
दोन्ही बाजूंना 5 ने विभागा.
-4\times 2+y=-3
-4x+y=-3 मध्ये x साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
-8+y=-3
2 ला -4 वेळा गुणाकार करा.
y=5
समीकरणाच्या दोन्ही बाजूस 8 जोडा.
x=2,y=5
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}