\left\{ \begin{array} { l } { 3 x + 5 y = 9 } \\ { 2 x - 5 y = 1 } \end{array} \right.
x, y साठी सोडवा
x=2
y=\frac{3}{5}=0.6
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
3x+5y=9,2x-5y=1
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x+5y=9
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=-5y+9
समीकरणाच्या दोन्ही बाजूंमधून 5y वजा करा.
x=\frac{1}{3}\left(-5y+9\right)
दोन्ही बाजूंना 3 ने विभागा.
x=-\frac{5}{3}y+3
-5y+9 ला \frac{1}{3} वेळा गुणाकार करा.
2\left(-\frac{5}{3}y+3\right)-5y=1
इतर समीकरणामध्ये x साठी -\frac{5y}{3}+3 चा विकल्प वापरा, 2x-5y=1.
-\frac{10}{3}y+6-5y=1
-\frac{5y}{3}+3 ला 2 वेळा गुणाकार करा.
-\frac{25}{3}y+6=1
-\frac{10y}{3} ते -5y जोडा.
-\frac{25}{3}y=-5
समीकरणाच्या दोन्ही बाजूंमधून 6 वजा करा.
y=\frac{3}{5}
समीकरणाच्या दोन्ही बाजूंना -\frac{25}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{5}{3}\times \frac{3}{5}+3
x=-\frac{5}{3}y+3 मध्ये y साठी \frac{3}{5} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-1+3
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{3}{5} चा -\frac{5}{3} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=2
3 ते -1 जोडा.
x=2,y=\frac{3}{5}
सिस्टम आता सोडवली आहे.
3x+5y=9,2x-5y=1
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&5\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\1\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&5\\2&-5\end{matrix}\right))\left(\begin{matrix}3&5\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-5\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&5\\2&-5\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-5\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-5\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-5\times 2}&-\frac{5}{3\left(-5\right)-5\times 2}\\-\frac{2}{3\left(-5\right)-5\times 2}&\frac{3}{3\left(-5\right)-5\times 2}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{2}{25}&-\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 9+\frac{1}{5}\\\frac{2}{25}\times 9-\frac{3}{25}\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\\frac{3}{5}\end{matrix}\right)
अंकगणित करा.
x=2,y=\frac{3}{5}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x+5y=9,2x-5y=1
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2\times 3x+2\times 5y=2\times 9,3\times 2x+3\left(-5\right)y=3
3x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
6x+10y=18,6x-15y=3
सरलीकृत करा.
6x-6x+10y+15y=18-3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x+10y=18 मधून 6x-15y=3 वजा करा.
10y+15y=18-3
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
25y=18-3
10y ते 15y जोडा.
25y=15
18 ते -3 जोडा.
y=\frac{3}{5}
दोन्ही बाजूंना 25 ने विभागा.
2x-5\times \frac{3}{5}=1
2x-5y=1 मध्ये y साठी \frac{3}{5} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x-3=1
\frac{3}{5} ला -5 वेळा गुणाकार करा.
2x=4
समीकरणाच्या दोन्ही बाजूस 3 जोडा.
x=2
दोन्ही बाजूंना 2 ने विभागा.
x=2,y=\frac{3}{5}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}