मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

2x-y=5,4x+6y=24
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x-y=5
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=y+5
समीकरणाच्या दोन्ही बाजूस y जोडा.
x=\frac{1}{2}\left(y+5\right)
दोन्ही बाजूंना 2 ने विभागा.
x=\frac{1}{2}y+\frac{5}{2}
y+5 ला \frac{1}{2} वेळा गुणाकार करा.
4\left(\frac{1}{2}y+\frac{5}{2}\right)+6y=24
इतर समीकरणामध्ये x साठी \frac{5+y}{2} चा विकल्प वापरा, 4x+6y=24.
2y+10+6y=24
\frac{5+y}{2} ला 4 वेळा गुणाकार करा.
8y+10=24
2y ते 6y जोडा.
8y=14
समीकरणाच्या दोन्ही बाजूंमधून 10 वजा करा.
y=\frac{7}{4}
दोन्ही बाजूंना 8 ने विभागा.
x=\frac{1}{2}\times \frac{7}{4}+\frac{5}{2}
x=\frac{1}{2}y+\frac{5}{2} मध्ये y साठी \frac{7}{4} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{7}{8}+\frac{5}{2}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{7}{4} चा \frac{1}{2} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=\frac{27}{8}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{5}{2} ते \frac{7}{8} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=\frac{27}{8},y=\frac{7}{4}
सिस्टम आता सोडवली आहे.
2x-y=5,4x+6y=24
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&-1\\4&6\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-\left(-4\right)}&-\frac{-1}{2\times 6-\left(-4\right)}\\-\frac{4}{2\times 6-\left(-4\right)}&\frac{2}{2\times 6-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{1}{16}\\-\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 5+\frac{1}{16}\times 24\\-\frac{1}{4}\times 5+\frac{1}{8}\times 24\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{8}\\\frac{7}{4}\end{matrix}\right)
अंकगणित करा.
x=\frac{27}{8},y=\frac{7}{4}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x-y=5,4x+6y=24
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
4\times 2x+4\left(-1\right)y=4\times 5,2\times 4x+2\times 6y=2\times 24
2x आणि 4x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 4 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
8x-4y=20,8x+12y=48
सरलीकृत करा.
8x-8x-4y-12y=20-48
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 8x-4y=20 मधून 8x+12y=48 वजा करा.
-4y-12y=20-48
8x ते -8x जोडा. 8x आणि -8x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-16y=20-48
-4y ते -12y जोडा.
-16y=-28
20 ते -48 जोडा.
y=\frac{7}{4}
दोन्ही बाजूंना -16 ने विभागा.
4x+6\times \frac{7}{4}=24
4x+6y=24 मध्ये y साठी \frac{7}{4} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
4x+\frac{21}{2}=24
\frac{7}{4} ला 6 वेळा गुणाकार करा.
4x=\frac{27}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{21}{2} वजा करा.
x=\frac{27}{8}
दोन्ही बाजूंना 4 ने विभागा.
x=\frac{27}{8},y=\frac{7}{4}
सिस्टम आता सोडवली आहे.