मुख्य सामग्री वगळा
y संदर्भात फरक करा
Tick mark Image
मूल्यांकन करा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

\frac{\left(2y^{2}+7y^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{1})-y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(2y^{2}+7y^{1}+6)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
कोणत्याही दोन डिफरंशिएबल फंक्शनसाठी, दोन फंक्शन्सच्या भागाकाराचा कृदंत ही अंशांच्या कृदंतांची विभाजकावेळी आणि विभाजाकांच्या कृदंतांची अंशांवेळी वजाबाकी आहे, अंश वर्गाने सर्वांचा भागाकार केलेला.
\frac{\left(2y^{2}+7y^{1}+6\right)y^{1-1}-y^{1}\left(2\times 2y^{2-1}+7y^{1-1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
\frac{\left(2y^{2}+7y^{1}+6\right)y^{0}-y^{1}\left(4y^{1}+7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
सरलीकृत करा.
\frac{2y^{2}y^{0}+7y^{1}y^{0}+6y^{0}-y^{1}\left(4y^{1}+7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
y^{0} ला 2y^{2}+7y^{1}+6 वेळा गुणाकार करा.
\frac{2y^{2}y^{0}+7y^{1}y^{0}+6y^{0}-\left(y^{1}\times 4y^{1}+y^{1}\times 7y^{0}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
4y^{1}+7y^{0} ला y^{1} वेळा गुणाकार करा.
\frac{2y^{2}+7y^{1}+6y^{0}-\left(4y^{1+1}+7y^{1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
समान आधाराच्या पॉवर्सचा गुणाकार करण्यासाठी, त्यांच्या घातांकांची बेरीज करा.
\frac{2y^{2}+7y^{1}+6y^{0}-\left(4y^{2}+7y^{1}\right)}{\left(2y^{2}+7y^{1}+6\right)^{2}}
सरलीकृत करा.
\frac{-2y^{2}+6y^{0}}{\left(2y^{2}+7y^{1}+6\right)^{2}}
टर्म्ससारखे एकत्रित करा.
\frac{-2y^{2}+6y^{0}}{\left(2y^{2}+7y+6\right)^{2}}
कोणत्याही टर्मसाठी t, t^{1}=t.
\frac{-2y^{2}+6\times 1}{\left(2y^{2}+7y+6\right)^{2}}
0 वगळता कोणत्याही टर्मसाठी t, t^{0}=1.
\frac{-2y^{2}+6}{\left(2y^{2}+7y+6\right)^{2}}
कोणत्याही टर्मसाठी t, t\times 1=t आणि 1t=t.