मूल्यांकन करा
\frac{v-9}{\left(v+7\right)\left(v+9\right)}
v संदर्भात फरक करा
\frac{207+18v-v^{2}}{v^{4}+32v^{3}+382v^{2}+2016v+3969}
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{v}{\left(v+8\right)\left(v+9\right)}-\frac{8}{\left(v+7\right)\left(v+8\right)}
v^{2}+17v+72 घटक. v^{2}+15v+56 घटक.
\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}-\frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \left(v+8\right)\left(v+9\right) आणि \left(v+7\right)\left(v+8\right) चा लघुत्तम साधारण विभाजक \left(v+7\right)\left(v+8\right)\left(v+9\right) आहे. \frac{v+7}{v+7} ला \frac{v}{\left(v+8\right)\left(v+9\right)} वेळा गुणाकार करा. \frac{v+9}{v+9} ला \frac{8}{\left(v+7\right)\left(v+8\right)} वेळा गुणाकार करा.
\frac{v\left(v+7\right)-8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} आणि \frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{v^{2}+7v-8v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
v\left(v+7\right)-8\left(v+9\right) मध्ये गुणाकार करा.
\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
v^{2}+7v-8v-72 मधील टर्मप्रमाणे एकत्रित करा.
\frac{\left(v-9\right)\left(v+8\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} मध्ये आधीच अवयव न काढलेल्या एक्सप्रेशन्सचा अवयव काढा.
\frac{v-9}{\left(v+7\right)\left(v+9\right)}
अंशांश आणि भागांश दोन्हींमध्ये v+8 रद्द करा.
\frac{v-9}{v^{2}+16v+63}
विस्तृत करा \left(v+7\right)\left(v+9\right).
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v}{\left(v+8\right)\left(v+9\right)}-\frac{8}{\left(v+7\right)\left(v+8\right)})
v^{2}+17v+72 घटक. v^{2}+15v+56 घटक.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}-\frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \left(v+8\right)\left(v+9\right) आणि \left(v+7\right)\left(v+8\right) चा लघुत्तम साधारण विभाजक \left(v+7\right)\left(v+8\right)\left(v+9\right) आहे. \frac{v+7}{v+7} ला \frac{v}{\left(v+8\right)\left(v+9\right)} वेळा गुणाकार करा. \frac{v+9}{v+9} ला \frac{8}{\left(v+7\right)\left(v+8\right)} वेळा गुणाकार करा.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v+7\right)-8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} आणि \frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+7v-8v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
v\left(v+7\right)-8\left(v+9\right) मध्ये गुणाकार करा.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
v^{2}+7v-8v-72 मधील टर्मप्रमाणे एकत्रित करा.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-9\right)\left(v+8\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} मध्ये आधीच अवयव न काढलेल्या एक्सप्रेशन्सचा अवयव काढा.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v-9}{\left(v+7\right)\left(v+9\right)})
अंशांश आणि भागांश दोन्हींमध्ये v+8 रद्द करा.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v-9}{v^{2}+16v+63})
v+7 ला v+9 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म आणि अशा टर्म एकत्रित करा.
\frac{\left(v^{2}+16v^{1}+63\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}-9)-\left(v^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{2}+16v^{1}+63)}{\left(v^{2}+16v^{1}+63\right)^{2}}
कोणत्याही दोन डिफरंशिएबल फंक्शनसाठी, दोन फंक्शन्सच्या भागाकाराचा कृदंत ही अंशांच्या कृदंतांची विभाजकावेळी आणि विभाजाकांच्या कृदंतांची अंशांवेळी वजाबाकी आहे, अंश वर्गाने सर्वांचा भागाकार केलेला.
\frac{\left(v^{2}+16v^{1}+63\right)v^{1-1}-\left(v^{1}-9\right)\left(2v^{2-1}+16v^{1-1}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
\frac{\left(v^{2}+16v^{1}+63\right)v^{0}-\left(v^{1}-9\right)\left(2v^{1}+16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
सरलीकृत करा.
\frac{v^{2}v^{0}+16v^{1}v^{0}+63v^{0}-\left(v^{1}-9\right)\left(2v^{1}+16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
v^{0} ला v^{2}+16v^{1}+63 वेळा गुणाकार करा.
\frac{v^{2}v^{0}+16v^{1}v^{0}+63v^{0}-\left(v^{1}\times 2v^{1}+v^{1}\times 16v^{0}-9\times 2v^{1}-9\times 16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
2v^{1}+16v^{0} ला v^{1}-9 वेळा गुणाकार करा.
\frac{v^{2}+16v^{1}+63v^{0}-\left(2v^{1+1}+16v^{1}-9\times 2v^{1}-9\times 16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
समान आधाराच्या पॉवर्सचा गुणाकार करण्यासाठी, त्यांच्या घातांकांची बेरीज करा.
\frac{v^{2}+16v^{1}+63v^{0}-\left(2v^{2}+16v^{1}-18v^{1}-144v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
सरलीकृत करा.
\frac{-v^{2}+18v^{1}+207v^{0}}{\left(v^{2}+16v^{1}+63\right)^{2}}
टर्म्ससारखे एकत्रित करा.
\frac{-v^{2}+18v+207v^{0}}{\left(v^{2}+16v+63\right)^{2}}
कोणत्याही टर्मसाठी t, t^{1}=t.
\frac{-v^{2}+18v+207\times 1}{\left(v^{2}+16v+63\right)^{2}}
0 वगळता कोणत्याही टर्मसाठी t, t^{0}=1.
\frac{-v^{2}+18v+207}{\left(v^{2}+16v+63\right)^{2}}
कोणत्याही टर्मसाठी t, t\times 1=t आणि 1t=t.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}