मूल्यांकन करा
-\frac{m\left(m+n\right)}{n}
विस्तृत करा
-\frac{m^{2}+mn}{n}
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{n-m}{n-m} ला n वेळा गुणाकार करा.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
\frac{n\left(n-m\right)}{n-m} आणि \frac{n^{2}}{n-m} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
n\left(n-m\right)-n^{2} मध्ये गुणाकार करा.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
n^{2}-nm-n^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+1}
n^{2}-m^{2} घटक.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} ला 1 वेळा गुणाकार करा.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}+\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} आणि \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}-m^{2}+mn-nm+n^{2}}{\left(m+n\right)\left(-m+n\right)}}
m^{2}+\left(m+n\right)\left(-m+n\right) मध्ये गुणाकार करा.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
m^{2}-m^{2}+mn-nm+n^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
\frac{-nm}{n-m} ला \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} च्या व्युत्क्रमणाने गुणून \frac{-nm}{n-m} ला \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ने भागाकार करा.
\frac{-m\left(m+n\right)}{n}
अंशांश आणि भागांश दोन्हींमध्ये n\left(-m+n\right) रद्द करा.
\frac{-m^{2}-mn}{n}
-m ला m+n ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{n-m}{n-m} ला n वेळा गुणाकार करा.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
\frac{n\left(n-m\right)}{n-m} आणि \frac{n^{2}}{n-m} चा भाजक एकच आहे, त्यांचे अंश वजा करून त्यांची वजाबाकी करा.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
n\left(n-m\right)-n^{2} मध्ये गुणाकार करा.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{n^{2}-m^{2}}+1}
n^{2}-nm-n^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+1}
n^{2}-m^{2} घटक.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}+\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
अभिव्यक्ती जोडण्यासाठी किंवा विभाजित करण्यासाठी, त्यांचे विभाजक समान बनवण्यासाठी त्यांना विस्तृत करा. \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} ला 1 वेळा गुणाकार करा.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}+\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}}
\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} आणि \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} चा भाजक एकच आहे, त्यांच्या अंशांची बेरीज करून त्यांना मिळवा.
\frac{\frac{-nm}{n-m}}{\frac{m^{2}-m^{2}+mn-nm+n^{2}}{\left(m+n\right)\left(-m+n\right)}}
m^{2}+\left(m+n\right)\left(-m+n\right) मध्ये गुणाकार करा.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
m^{2}-m^{2}+mn-nm+n^{2} मधील टर्मप्रमाणे एकत्रित करा.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
\frac{-nm}{n-m} ला \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} च्या व्युत्क्रमणाने गुणून \frac{-nm}{n-m} ला \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ने भागाकार करा.
\frac{-m\left(m+n\right)}{n}
अंशांश आणि भागांश दोन्हींमध्ये n\left(-m+n\right) रद्द करा.
\frac{-m^{2}-mn}{n}
-m ला m+n ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}