p साठी सोडवा
p=\tan(\theta )
\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}
θ साठी सोडवा
\theta =\pi +2n_{3}\pi +arcSin(p\left(p^{2}+1\right)^{-\frac{1}{2}})\text{, }n_{3}\in \mathrm{Z}\text{, }\exists n_{42}\in \mathrm{Z}\text{ : }\left(n_{3}>\left(-\frac{1}{2}\right)\left(arcSin(p\left(p^{2}+1\right)^{-\frac{1}{2}})+\frac{1}{2}\pi +\left(-1\right)\pi n_{42}\right)\pi ^{-1}\text{ and }n_{3}<\left(-\frac{1}{2}\right)\left(arcSin(p\left(p^{2}+1\right)^{-\frac{1}{2}})+\left(-\frac{1}{2}\right)\pi +\left(-1\right)\pi n_{42}\right)\pi ^{-1}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\pi +2n_{3}\pi +arcSin(p\left(p^{2}+1\right)^{-\frac{1}{2}})=\frac{1}{2}\pi +\pi n_{1}
\theta =arcSin(p\left(p^{2}+1\right)^{-\frac{1}{2}})+2\pi n_{22}\text{, }n_{22}\in \mathrm{Z}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }arcSin(p\left(p^{2}+1\right)^{-\frac{1}{2}})+2\pi n_{22}=\frac{1}{2}\pi +\pi n_{1}
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}