പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
z എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

z^{2}-3z+\frac{9}{4}=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{9}{4}}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി \frac{9}{4} എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
z=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{9}{4}}}{2}
-3 സ്ക്വയർ ചെയ്യുക.
z=\frac{-\left(-3\right)±\sqrt{9-9}}{2}
-4, \frac{9}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
z=\frac{-\left(-3\right)±\sqrt{0}}{2}
9, -9 എന്നതിൽ ചേർക്കുക.
z=-\frac{-3}{2}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
z=\frac{3}{2}
-3 എന്നതിന്‍റെ വിപരീതം 3 ആണ്.
z^{2}-3z+\frac{9}{4}=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\left(z-\frac{3}{2}\right)^{2}=0
z^{2}-3z+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{0}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
z-\frac{3}{2}=0 z-\frac{3}{2}=0
ലഘൂകരിക്കുക.
z=\frac{3}{2} z=\frac{3}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.
z=\frac{3}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു. പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.