x എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}\\x=\log_{1032}\left(2\right)\approx 0.099887853\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
y എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=\log_{1032}\left(2\right)\end{matrix}\right.
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
y\times 1032^{x}=2y
സമവാക്യം സോൾവ് ചെയ്യാൻ എക്സ്പോണന്റുകളുടെയും ലോഗരിതങ്ങളുടെയും നിയമങ്ങൾ ഉപയോഗിക്കുക.
1032^{x}=2
ഇരുവശങ്ങളെയും y കൊണ്ട് ഹരിക്കുക.
\log(1032^{x})=\log(2)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും ലോഗരിതം എടുക്കുക.
x\log(1032)=\log(2)
ഒരു പവറിലേക്ക് ഉയർത്തിയ സംഖ്യയുടെ ലോഗരിതം എന്നത് പവറും സംഖ്യയുടെ ലോഗരിതവും തമ്മിലുള്ള ഗുണിതമാണ്.
x=\frac{\log(2)}{\log(1032)}
ഇരുവശങ്ങളെയും \log(1032) കൊണ്ട് ഹരിക്കുക.
x=\log_{1032}\left(2\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) എന്ന ചേഞ്ച്-ഓഫ്-ബേസ് സൂത്രവാക്യം ഉപയോഗിച്ച്.
y\times 1032^{x}-2y=0
ഇരുവശങ്ങളിൽ നിന്നും 2y കുറയ്ക്കുക.
\left(1032^{x}-2\right)y=0
y അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
y=0
1032^{x}-2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}