പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-7 ab=6
സമവാക്യം സോൾവ് ചെയ്യാൻ, y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് y^{2}-7y+6 ഫാക്‌ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-6 -2,-3
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 6 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-6=-7 -2-3=-5
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=-1
സൊല്യൂഷൻ എന്നത് -7 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(y-6\right)\left(y-1\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്‌ടർ ചെയ്‌ത \left(y+a\right)\left(y+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
y=6 y=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ y-6=0, y-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
a+b=-7 ab=1\times 6=6
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം y^{2}+ay+by+6 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-6 -2,-3
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 6 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-6=-7 -2-3=-5
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=-1
സൊല്യൂഷൻ എന്നത് -7 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(y^{2}-6y\right)+\left(-y+6\right)
y^{2}-7y+6 എന്നത് \left(y^{2}-6y\right)+\left(-y+6\right) എന്നായി തിരുത്തിയെഴുതുക.
y\left(y-6\right)-\left(y-6\right)
ആദ്യ ഗ്രൂപ്പിലെ y എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(y-6\right)\left(y-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് y-6 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
y=6 y=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ y-6=0, y-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
y^{2}-7y+6=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -7 എന്നതും c എന്നതിനായി 6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-\left(-7\right)±\sqrt{49-4\times 6}}{2}
-7 സ്ക്വയർ ചെയ്യുക.
y=\frac{-\left(-7\right)±\sqrt{49-24}}{2}
-4, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-\left(-7\right)±\sqrt{25}}{2}
49, -24 എന്നതിൽ ചേർക്കുക.
y=\frac{-\left(-7\right)±5}{2}
25 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{7±5}{2}
-7 എന്നതിന്‍റെ വിപരീതം 7 ആണ്.
y=\frac{12}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, y=\frac{7±5}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7, 5 എന്നതിൽ ചേർക്കുക.
y=6
2 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
y=\frac{2}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, y=\frac{7±5}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 7 എന്നതിൽ നിന്ന് 5 വ്യവകലനം ചെയ്യുക.
y=1
2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
y=6 y=1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
y^{2}-7y+6=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
y^{2}-7y+6-6=-6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
y^{2}-7y=-6
അതിൽ നിന്നുതന്നെ 6 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
y^{2}-7y+\left(-\frac{7}{2}\right)^{2}=-6+\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -7-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{7}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
y^{2}-7y+\frac{49}{4}=-6+\frac{49}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{7}{2} സ്ക്വയർ ചെയ്യുക.
y^{2}-7y+\frac{49}{4}=\frac{25}{4}
-6, \frac{49}{4} എന്നതിൽ ചേർക്കുക.
\left(y-\frac{7}{2}\right)^{2}=\frac{25}{4}
y^{2}-7y+\frac{49}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y-\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y-\frac{7}{2}=\frac{5}{2} y-\frac{7}{2}=-\frac{5}{2}
ലഘൂകരിക്കുക.
y=6 y=1
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{7}{2} ചേർക്കുക.