ഘടകം
\left(y-10\right)\left(y-6\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(y-10\right)\left(y-6\right)
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=-16 ab=1\times 60=60
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം y^{2}+ay+by+60 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. 60 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-10 b=-6
സൊല്യൂഷൻ എന്നത് -16 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(y^{2}-10y\right)+\left(-6y+60\right)
y^{2}-16y+60 എന്നത് \left(y^{2}-10y\right)+\left(-6y+60\right) എന്നായി തിരുത്തിയെഴുതുക.
y\left(y-10\right)-6\left(y-10\right)
ആദ്യ ഗ്രൂപ്പിലെ y എന്നതും രണ്ടാമത്തേതിലെ -6 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(y-10\right)\left(y-6\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് y-10 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
y^{2}-16y+60=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 60}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y=\frac{-\left(-16\right)±\sqrt{256-4\times 60}}{2}
-16 സ്ക്വയർ ചെയ്യുക.
y=\frac{-\left(-16\right)±\sqrt{256-240}}{2}
-4, 60 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-\left(-16\right)±\sqrt{16}}{2}
256, -240 എന്നതിൽ ചേർക്കുക.
y=\frac{-\left(-16\right)±4}{2}
16 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{16±4}{2}
-16 എന്നതിന്റെ വിപരീതം 16 ആണ്.
y=\frac{20}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, y=\frac{16±4}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 16, 4 എന്നതിൽ ചേർക്കുക.
y=10
2 കൊണ്ട് 20 എന്നതിനെ ഹരിക്കുക.
y=\frac{12}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, y=\frac{16±4}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 16 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
y=6
2 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
y^{2}-16y+60=\left(y-10\right)\left(y-6\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി 10 എന്നതും, x_{2}-നായി 6 എന്നതും പകരം വയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}