y എന്നതിനായി സോൾവ് ചെയ്യുക
y=-12
y=6
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
y^{2}+6y+8-80=0
ഇരുവശങ്ങളിൽ നിന്നും 80 കുറയ്ക്കുക.
y^{2}+6y-72=0
-72 നേടാൻ 8 എന്നതിൽ നിന്ന് 80 കുറയ്ക്കുക.
a+b=6 ab=-72
സമവാക്യം സോൾവ് ചെയ്യാൻ, y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് y^{2}+6y-72 ഫാക്ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -72 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=12
സൊല്യൂഷൻ എന്നത് 6 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(y-6\right)\left(y+12\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്ടർ ചെയ്ത \left(y+a\right)\left(y+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
y=6 y=-12
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ y-6=0, y+12=0 എന്നിവ സോൾവ് ചെയ്യുക.
y^{2}+6y+8-80=0
ഇരുവശങ്ങളിൽ നിന്നും 80 കുറയ്ക്കുക.
y^{2}+6y-72=0
-72 നേടാൻ 8 എന്നതിൽ നിന്ന് 80 കുറയ്ക്കുക.
a+b=6 ab=1\left(-72\right)=-72
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം y^{2}+ay+by-72 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -72 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=12
സൊല്യൂഷൻ എന്നത് 6 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(y^{2}-6y\right)+\left(12y-72\right)
y^{2}+6y-72 എന്നത് \left(y^{2}-6y\right)+\left(12y-72\right) എന്നായി തിരുത്തിയെഴുതുക.
y\left(y-6\right)+12\left(y-6\right)
ആദ്യ ഗ്രൂപ്പിലെ y എന്നതും രണ്ടാമത്തേതിലെ 12 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(y-6\right)\left(y+12\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് y-6 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
y=6 y=-12
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ y-6=0, y+12=0 എന്നിവ സോൾവ് ചെയ്യുക.
y^{2}+6y+8=80
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y^{2}+6y+8-80=80-80
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 80 കുറയ്ക്കുക.
y^{2}+6y+8-80=0
അതിൽ നിന്നുതന്നെ 80 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
y^{2}+6y-72=0
8 എന്നതിൽ നിന്ന് 80 വ്യവകലനം ചെയ്യുക.
y=\frac{-6±\sqrt{6^{2}-4\left(-72\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി -72 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-6±\sqrt{36-4\left(-72\right)}}{2}
6 സ്ക്വയർ ചെയ്യുക.
y=\frac{-6±\sqrt{36+288}}{2}
-4, -72 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-6±\sqrt{324}}{2}
36, 288 എന്നതിൽ ചേർക്കുക.
y=\frac{-6±18}{2}
324 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{12}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, y=\frac{-6±18}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 18 എന്നതിൽ ചേർക്കുക.
y=6
2 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
y=-\frac{24}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, y=\frac{-6±18}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 18 വ്യവകലനം ചെയ്യുക.
y=-12
2 കൊണ്ട് -24 എന്നതിനെ ഹരിക്കുക.
y=6 y=-12
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
y^{2}+6y+8=80
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
y^{2}+6y+8-8=80-8
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
y^{2}+6y=80-8
അതിൽ നിന്നുതന്നെ 8 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
y^{2}+6y=72
80 എന്നതിൽ നിന്ന് 8 വ്യവകലനം ചെയ്യുക.
y^{2}+6y+3^{2}=72+3^{2}
3 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ 6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും 3 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
y^{2}+6y+9=72+9
3 സ്ക്വയർ ചെയ്യുക.
y^{2}+6y+9=81
72, 9 എന്നതിൽ ചേർക്കുക.
\left(y+3\right)^{2}=81
y^{2}+6y+9 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y+3\right)^{2}}=\sqrt{81}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y+3=9 y+3=-9
ലഘൂകരിക്കുക.
y=6 y=-12
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}