പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

y^{2}+5y=625
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y^{2}+5y-625=625-625
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 625 കുറയ്ക്കുക.
y^{2}+5y-625=0
അതിൽ നിന്നുതന്നെ 625 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
y=\frac{-5±\sqrt{5^{2}-4\left(-625\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 5 എന്നതും c എന്നതിനായി -625 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-5±\sqrt{25-4\left(-625\right)}}{2}
5 സ്ക്വയർ ചെയ്യുക.
y=\frac{-5±\sqrt{25+2500}}{2}
-4, -625 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-5±\sqrt{2525}}{2}
25, 2500 എന്നതിൽ ചേർക്കുക.
y=\frac{-5±5\sqrt{101}}{2}
2525 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{5\sqrt{101}-5}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, y=\frac{-5±5\sqrt{101}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5, 5\sqrt{101} എന്നതിൽ ചേർക്കുക.
y=\frac{-5\sqrt{101}-5}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, y=\frac{-5±5\sqrt{101}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5 എന്നതിൽ നിന്ന് 5\sqrt{101} വ്യവകലനം ചെയ്യുക.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
y^{2}+5y=625
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
y^{2}+5y+\left(\frac{5}{2}\right)^{2}=625+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 5-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{5}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
y^{2}+5y+\frac{25}{4}=625+\frac{25}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{5}{2} സ്ക്വയർ ചെയ്യുക.
y^{2}+5y+\frac{25}{4}=\frac{2525}{4}
625, \frac{25}{4} എന്നതിൽ ചേർക്കുക.
\left(y+\frac{5}{2}\right)^{2}=\frac{2525}{4}
y^{2}+5y+\frac{25}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y+\frac{5}{2}\right)^{2}}=\sqrt{\frac{2525}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y+\frac{5}{2}=\frac{5\sqrt{101}}{2} y+\frac{5}{2}=-\frac{5\sqrt{101}}{2}
ലഘൂകരിക്കുക.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{2} കുറയ്ക്കുക.