a എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}a=-\frac{bx-y+c}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=c\text{ and }x=0\end{matrix}\right.
b എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
\left\{\begin{matrix}b=-\frac{ax^{2}-y+c}{x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&y=c\text{ and }x=0\end{matrix}\right.
a എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}a=-\frac{bx-y+c}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=c\text{ and }x=0\end{matrix}\right.
b എന്നതിനായി സോൾവ് ചെയ്യുക
\left\{\begin{matrix}b=-\frac{ax^{2}-y+c}{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&y=c\text{ and }x=0\end{matrix}\right.
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
ax^{2}+bx+c=y
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
ax^{2}+c=y-bx
ഇരുവശങ്ങളിൽ നിന്നും bx കുറയ്ക്കുക.
ax^{2}=y-bx-c
ഇരുവശങ്ങളിൽ നിന്നും c കുറയ്ക്കുക.
x^{2}a=-bx+y-c
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{x^{2}a}{x^{2}}=\frac{-bx+y-c}{x^{2}}
ഇരുവശങ്ങളെയും x^{2} കൊണ്ട് ഹരിക്കുക.
a=\frac{-bx+y-c}{x^{2}}
x^{2} കൊണ്ട് ഹരിക്കുന്നത്, x^{2} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
ax^{2}+bx+c=y
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
bx+c=y-ax^{2}
ഇരുവശങ്ങളിൽ നിന്നും ax^{2} കുറയ്ക്കുക.
bx=y-ax^{2}-c
ഇരുവശങ്ങളിൽ നിന്നും c കുറയ്ക്കുക.
bx=-ax^{2}+y-c
പദങ്ങൾ വീണ്ടും അടുക്കുക.
xb=-ax^{2}+y-c
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{xb}{x}=\frac{-ax^{2}+y-c}{x}
ഇരുവശങ്ങളെയും x കൊണ്ട് ഹരിക്കുക.
b=\frac{-ax^{2}+y-c}{x}
x കൊണ്ട് ഹരിക്കുന്നത്, x കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
ax^{2}+bx+c=y
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
ax^{2}+c=y-bx
ഇരുവശങ്ങളിൽ നിന്നും bx കുറയ്ക്കുക.
ax^{2}=y-bx-c
ഇരുവശങ്ങളിൽ നിന്നും c കുറയ്ക്കുക.
x^{2}a=-bx+y-c
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{x^{2}a}{x^{2}}=\frac{-bx+y-c}{x^{2}}
ഇരുവശങ്ങളെയും x^{2} കൊണ്ട് ഹരിക്കുക.
a=\frac{-bx+y-c}{x^{2}}
x^{2} കൊണ്ട് ഹരിക്കുന്നത്, x^{2} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
ax^{2}+bx+c=y
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
bx+c=y-ax^{2}
ഇരുവശങ്ങളിൽ നിന്നും ax^{2} കുറയ്ക്കുക.
bx=y-ax^{2}-c
ഇരുവശങ്ങളിൽ നിന്നും c കുറയ്ക്കുക.
bx=-ax^{2}+y-c
പദങ്ങൾ വീണ്ടും അടുക്കുക.
xb=-ax^{2}+y-c
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{xb}{x}=\frac{-ax^{2}+y-c}{x}
ഇരുവശങ്ങളെയും x കൊണ്ട് ഹരിക്കുക.
b=\frac{-ax^{2}+y-c}{x}
x കൊണ്ട് ഹരിക്കുന്നത്, x കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}