x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\left(2y+9\right)\left(2y+11\right)
2y+10\geq 0
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\left(2y+9\right)\left(2y+11\right)
y=-5\text{ or }arg(2y+10)<\pi
y എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
y=\frac{\sqrt{x+1}-10}{2}
y എന്നതിനായി സോൾവ് ചെയ്യുക
y=\frac{\sqrt{x+1}-10}{2}
x\geq -1
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{1}{2}\sqrt{x+1}-5=y
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\frac{1}{2}\sqrt{x+1}=y+5
5 ഇരു വശങ്ങളിലും ചേർക്കുക.
\frac{\frac{1}{2}\sqrt{x+1}}{\frac{1}{2}}=\frac{y+5}{\frac{1}{2}}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഗുണിക്കുക.
\sqrt{x+1}=\frac{y+5}{\frac{1}{2}}
\frac{1}{2} കൊണ്ട് ഹരിക്കുന്നത്, \frac{1}{2} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
\sqrt{x+1}=2y+10
\frac{1}{2} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് y+5 ഗുണിക്കുന്നതിലൂടെ \frac{1}{2} കൊണ്ട് y+5 എന്നതിനെ ഹരിക്കുക.
x+1=4\left(y+5\right)^{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
x+1-1=4\left(y+5\right)^{2}-1
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
x=4\left(y+5\right)^{2}-1
അതിൽ നിന്നുതന്നെ 1 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x=4y^{2}+40y+99
4\left(5+y\right)^{2} എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}