പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}+6x=6
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}+6x-6=0
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി -6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-6±\sqrt{36-4\left(-6\right)}}{2}
6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-6±\sqrt{36+24}}{2}
-4, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-6±\sqrt{60}}{2}
36, 24 എന്നതിൽ ചേർക്കുക.
x=\frac{-6±2\sqrt{15}}{2}
60 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2\sqrt{15}-6}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-6±2\sqrt{15}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 2\sqrt{15} എന്നതിൽ ചേർക്കുക.
x=\sqrt{15}-3
2 കൊണ്ട് -6+2\sqrt{15} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{15}-6}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-6±2\sqrt{15}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 2\sqrt{15} വ്യവകലനം ചെയ്യുക.
x=-\sqrt{15}-3
2 കൊണ്ട് -6-2\sqrt{15} എന്നതിനെ ഹരിക്കുക.
x=\sqrt{15}-3 x=-\sqrt{15}-3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+6x=6
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}+6x+3^{2}=6+3^{2}
3 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 3 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+6x+9=6+9
3 സ്ക്വയർ ചെയ്യുക.
x^{2}+6x+9=15
6, 9 എന്നതിൽ ചേർക്കുക.
\left(x+3\right)^{2}=15
x^{2}+6x+9 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+3\right)^{2}}=\sqrt{15}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+3=\sqrt{15} x+3=-\sqrt{15}
ലഘൂകരിക്കുക.
x=\sqrt{15}-3 x=-\sqrt{15}-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.
x^{2}+6x=6
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}+6x-6=0
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി -6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-6±\sqrt{36-4\left(-6\right)}}{2}
6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-6±\sqrt{36+24}}{2}
-4, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-6±\sqrt{60}}{2}
36, 24 എന്നതിൽ ചേർക്കുക.
x=\frac{-6±2\sqrt{15}}{2}
60 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2\sqrt{15}-6}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-6±2\sqrt{15}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 2\sqrt{15} എന്നതിൽ ചേർക്കുക.
x=\sqrt{15}-3
2 കൊണ്ട് -6+2\sqrt{15} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{15}-6}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-6±2\sqrt{15}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 2\sqrt{15} വ്യവകലനം ചെയ്യുക.
x=-\sqrt{15}-3
2 കൊണ്ട് -6-2\sqrt{15} എന്നതിനെ ഹരിക്കുക.
x=\sqrt{15}-3 x=-\sqrt{15}-3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x^{2}+6x=6
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}+6x+3^{2}=6+3^{2}
3 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 3 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+6x+9=6+9
3 സ്ക്വയർ ചെയ്യുക.
x^{2}+6x+9=15
6, 9 എന്നതിൽ ചേർക്കുക.
\left(x+3\right)^{2}=15
x^{2}+6x+9 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+3\right)^{2}}=\sqrt{15}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+3=\sqrt{15} x+3=-\sqrt{15}
ലഘൂകരിക്കുക.
x=\sqrt{15}-3 x=-\sqrt{15}-3
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3 കുറയ്ക്കുക.