x എന്നതിനായി സോൾവ് ചെയ്യുക
x=8
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x-6\sqrt{x+1}=-10
ഇരുവശങ്ങളിൽ നിന്നും 10 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
-6\sqrt{x+1}=-10-x
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
\left(-6\sqrt{x+1}\right)^{2}=\left(-10-x\right)^{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
\left(-6\right)^{2}\left(\sqrt{x+1}\right)^{2}=\left(-10-x\right)^{2}
\left(-6\sqrt{x+1}\right)^{2} വികസിപ്പിക്കുക.
36\left(\sqrt{x+1}\right)^{2}=\left(-10-x\right)^{2}
2-ന്റെ പവറിലേക്ക് -6 കണക്കാക്കി 36 നേടുക.
36\left(x+1\right)=\left(-10-x\right)^{2}
2-ന്റെ പവറിലേക്ക് \sqrt{x+1} കണക്കാക്കി x+1 നേടുക.
36x+36=\left(-10-x\right)^{2}
x+1 കൊണ്ട് 36 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
36x+36=100+20x+x^{2}
\left(-10-x\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
36x+36-20x=100+x^{2}
ഇരുവശങ്ങളിൽ നിന്നും 20x കുറയ്ക്കുക.
16x+36=100+x^{2}
16x നേടാൻ 36x, -20x എന്നിവ യോജിപ്പിക്കുക.
16x+36-x^{2}=100
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
16x+36-x^{2}-100=0
ഇരുവശങ്ങളിൽ നിന്നും 100 കുറയ്ക്കുക.
16x-64-x^{2}=0
-64 നേടാൻ 36 എന്നതിൽ നിന്ന് 100 കുറയ്ക്കുക.
-x^{2}+16x-64=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=16 ab=-\left(-64\right)=64
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -x^{2}+ax+bx-64 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,64 2,32 4,16 8,8
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. 64 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+64=65 2+32=34 4+16=20 8+8=16
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=8 b=8
സൊല്യൂഷൻ എന്നത് 16 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-x^{2}+8x\right)+\left(8x-64\right)
-x^{2}+16x-64 എന്നത് \left(-x^{2}+8x\right)+\left(8x-64\right) എന്നായി തിരുത്തിയെഴുതുക.
-x\left(x-8\right)+8\left(x-8\right)
ആദ്യ ഗ്രൂപ്പിലെ -x എന്നതും രണ്ടാമത്തേതിലെ 8 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-8\right)\left(-x+8\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-8 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=8 x=8
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-8=0, -x+8=0 എന്നിവ സോൾവ് ചെയ്യുക.
8-6\sqrt{8+1}+10=0
x-6\sqrt{x+1}+10=0 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 8 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
0=0
ലഘൂകരിക്കുക. മൂല്യം x=8 സമവാക്യം സാധൂകരിക്കുന്നു.
8-6\sqrt{8+1}+10=0
x-6\sqrt{x+1}+10=0 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 8 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
0=0
ലഘൂകരിക്കുക. മൂല്യം x=8 സമവാക്യം സാധൂകരിക്കുന്നു.
x=8 x=8
-6\sqrt{x+1}=-x-10-ന്റെ എല്ലാ പരിഹാരങ്ങളും ലിസ്റ്റുചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}