പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

xx+x\left(-5.6\right)+6.4=0
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
x^{2}+x\left(-5.6\right)+6.4=0
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}-5.6x+6.4=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-5.6\right)±\sqrt{\left(-5.6\right)^{2}-4\times 6.4}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -5.6 എന്നതും c എന്നതിനായി 6.4 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-5.6\right)±\sqrt{31.36-4\times 6.4}}{2}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -5.6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-5.6\right)±\sqrt{31.36-25.6}}{2}
-4, 6.4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-5.6\right)±\sqrt{5.76}}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ 31.36 എന്നത് -25.6 എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{-\left(-5.6\right)±\frac{12}{5}}{2}
5.76 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{5.6±\frac{12}{5}}{2}
-5.6 എന്നതിന്‍റെ വിപരീതം 5.6 ആണ്.
x=\frac{8}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{5.6±\frac{12}{5}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ 5.6 എന്നത് \frac{12}{5} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=4
2 കൊണ്ട് 8 എന്നതിനെ ഹരിക്കുക.
x=\frac{\frac{16}{5}}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{5.6±\frac{12}{5}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് 5.6 എന്നതിൽ നിന്ന് \frac{12}{5} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{8}{5}
2 കൊണ്ട് \frac{16}{5} എന്നതിനെ ഹരിക്കുക.
x=4 x=\frac{8}{5}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
xx+x\left(-5.6\right)+6.4=0
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
x^{2}+x\left(-5.6\right)+6.4=0
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
x^{2}+x\left(-5.6\right)=-6.4
ഇരുവശങ്ങളിൽ നിന്നും 6.4 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
x^{2}-5.6x=-6.4
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}-5.6x+\left(-2.8\right)^{2}=-6.4+\left(-2.8\right)^{2}
-2.8 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -5.6-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -2.8 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-5.6x+7.84=-6.4+7.84
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -2.8 സ്ക്വയർ ചെയ്യുക.
x^{2}-5.6x+7.84=1.44
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -6.4 എന്നത് 7.84 എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-2.8\right)^{2}=1.44
x^{2}-5.6x+7.84 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-2.8\right)^{2}}=\sqrt{1.44}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-2.8=\frac{6}{5} x-2.8=-\frac{6}{5}
ലഘൂകരിക്കുക.
x=4 x=\frac{8}{5}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 2.8 ചേർക്കുക.