x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-1
x=\frac{1}{5}=0.2
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
5x^{2}+4x-1=0
5x+4 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
a+b=4 ab=5\left(-1\right)=-5
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 5x^{2}+ax+bx-1 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-1 b=5
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(5x^{2}-x\right)+\left(5x-1\right)
5x^{2}+4x-1 എന്നത് \left(5x^{2}-x\right)+\left(5x-1\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(5x-1\right)+5x-1
5x^{2}-x എന്നതിൽ x ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5x-1\right)\left(x+1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 5x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{1}{5} x=-1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 5x-1=0, x+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
5x^{2}+4x-1=0
5x+4 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x=\frac{-4±\sqrt{4^{2}-4\times 5\left(-1\right)}}{2\times 5}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 5 എന്നതും b എന്നതിനായി 4 എന്നതും c എന്നതിനായി -1 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-4±\sqrt{16-4\times 5\left(-1\right)}}{2\times 5}
4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-4±\sqrt{16-20\left(-1\right)}}{2\times 5}
-4, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{16+20}}{2\times 5}
-20, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-4±\sqrt{36}}{2\times 5}
16, 20 എന്നതിൽ ചേർക്കുക.
x=\frac{-4±6}{2\times 5}
36 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-4±6}{10}
2, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2}{10}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-4±6}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4, 6 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{5}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{10} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{10}{10}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-4±6}{10} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -4 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
x=-1
10 കൊണ്ട് -10 എന്നതിനെ ഹരിക്കുക.
x=\frac{1}{5} x=-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
5x^{2}+4x-1=0
5x+4 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
5x^{2}+4x=1
1 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
\frac{5x^{2}+4x}{5}=\frac{1}{5}
ഇരുവശങ്ങളെയും 5 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{4}{5}x=\frac{1}{5}
5 കൊണ്ട് ഹരിക്കുന്നത്, 5 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=\frac{1}{5}+\left(\frac{2}{5}\right)^{2}
\frac{2}{5} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{4}{5}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{2}{5} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{1}{5}+\frac{4}{25}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{2}{5} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{9}{25}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{5} എന്നത് \frac{4}{25} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{2}{5}\right)^{2}=\frac{9}{25}
x^{2}+\frac{4}{5}x+\frac{4}{25} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{2}{5}=\frac{3}{5} x+\frac{2}{5}=-\frac{3}{5}
ലഘൂകരിക്കുക.
x=\frac{1}{5} x=-1
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{2}{5} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}